• Title/Summary/Keyword: Total displacement

Search Result 760, Processing Time 0.023 seconds

Suggestion of a Modified RMR based on Effect of RMR Parameters on Tunnel Displacement in Sedimentary Rocks (퇴적암 기반 터널에서의 지질인자별 변위 영향도를 고려한 RMR 수정 제안)

  • Seo, Yong-Seok;Yim, Sung-Bin;Na, Jong-Hwa;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2008
  • Total displacement under non-reinforcement is a quantitative index of rock mass behavior during tunnel excavation and depends widely upon geological characteristics. The primary purpose of this study is to suggest a rock mass evaluation method, well representing tunnel behavior during excavation, according to rock type. A 3-D numerical analysis was carried out, with consideration of the shape of tunnel section, excavation condition and so forth, in a sedimentary rock-based tunnel, and total displacements under non-reinforcement according to rock mass class were calculated. Finally, quantification analysis was carried out to assess correlation of the total displacement with RMR parameters. As the result, a modified RMR system fer quantification of rock mass behavior during tunnel excavation is suggested.

A Experimental Study on the Stability Management Method using change of Inclination for Embankment on Soft Clay (연약지반 성토시의 기울기변화를 이용한 안정관리기법에 관한 실험적 연구)

  • Ryu, Ji-Hoon;Im, Jong-Chul;Chang, Ji-Keon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.898-905
    • /
    • 2005
  • The settlement of embankment on soft clay includes shear settlement due to shear deformation. Even though the consolidation settlement is not related to lateral displacement, but shear settlement makes the embankment unstable because it deforms ground and decreases the ground strength. In order to determine the shear deformation behaviour during embankment construction, 3 cases (1B, 2B, and 3B) of rapid undrained loading tests on soft clays were performed. Shear settlement is consist of elastic settlement, plastic settlement and viscous settlement. Elastic settlement isn't considered because the range is small, therefore the first is the range of plastic displacement, and the second is that of viscous displacement in the displacement-time curve for each loading stage. After determining that the change in the inclination of the viscous displacement range is larger than in the plastic displacement range after the ground failure occurs for the loading stage, the stability management methods were suggested considering that it is hard to divide the plastic displacement range and the viscous displacement range. The stability management method was based on the ratio of the plastic displacement range's inclination and the viscous displacement range's inclination. A stability management method based on the ratio of the total inclination for each loading stage compared to the whole inclination in the initial loading stage was also recommended.

  • PDF

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

The anchorage-slip effect on direct displacement-based design of R/C bridge piers for limiting material strains

  • Mergos, P.E.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.493-513
    • /
    • 2013
  • Direct displacement-based design (DDBD) represents an innovative philosophy for seismic design of structures. When structural considerations are more critical, DDBD design should be carried on the basis of limiting material strains since structural damage is always strain related. In this case, the outcome of DDBD is strongly influenced by the displacement demand of the structural element for the target limit strains. Experimental studies have shown that anchorage slip may contribute significantly to the total displacement capacity of R/C column elements. However, in the previous studies, anchorage slip effect is either ignored or lumped into flexural deformations by applying the equivalent strain penetration length. In the light of the above, an attempt is made in this paper to include explicitly anchorage slip effect in DDBD of R/C column elements. For this purpose, a new computer program named RCCOLA-DBD is developed for the DDBD of single R/C elements for limiting material strains. By applying this program, more than 300 parametric designs are conducted to investigate the influence of anchorage slip effect as well as of numerous other parameters on the seismic design of R/C members according to this methodology.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

Economic Impacts of Abnormal Climate on Total Output of Red Pepper (이상기후에 따른 건고추 생산농가의 총수입 변화 계측)

  • Cho, Jae-Hwan;Suh, Jeong-Min;Kang, Jum-Soon;Hong, Chang-Oh;Lim, Woo-Taik;Shin, Hyun-Moo;Kim, Woon-Won
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.707-713
    • /
    • 2014
  • The purpose of this article is analyzing the economic impacts of abnormal climate on total revenue of red pepper in Korea, with employing the equilibrium displacement model. Our simulation results show the rate of yield change, price change, and total revenue change according to the climate change scenarios. In th case of by RCP 8.5 Scenario, red pepper production volume would be expected to decrease by 77.2% compared to 2012 while price increasing by 29.6%. As a result, total revenue to be returned to farmers would be reduced by 47.6% than it was in 2012. In contrast, total revenue would be expected to decline by 29.6% according to RCP 4.5 scenario.

Post-buckling and Elasto-plastic Analysis of Shell Structures using the Degenerated Shell Element (변형된 쉘요소를 이용한 판 및 쉘 구조의 후좌굴 및 탄.소성 유한요소해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.17-27
    • /
    • 1995
  • For the post-buckling and elasto-plastic analysis of shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors in the iteration process and evaluating the total Green-Lagrange stain corresponding U total displacements. In the calculation of the stiffness matrix, the element formulation takes into account the effect of finite rotation increments by retaining second order rotation terms in the incremental displacement field. The selective or reduced integration scheme using the heterosis element is applied in order to overcome both shear locking phenomena and the zero energy mode. The load/displacement incremental scheme is adopted for geometric non-linear F .E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references's results.

  • PDF

Characterization and uncertainty of uplift load-displacement behaviour of belled piers

  • Lu, Xian-long;Qian, Zeng-zhen;Zheng, Wei-feng;Yang, Wen-zhi
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.211-234
    • /
    • 2016
  • A total of 99 full-scale field load tests at 22 sites were compiled for this study to elucidate several issues related to the load-displacement behaviour of belled piers under axial uplift loading, including (1) interpretation criteria to define various elastic, inelastic, and "failure" states for each load test from the load-displacement curve; (2) generalized correlations among these states and determinations to the predicted ultimate uplift resistances; (3) uncertainty in the resistance model factor statistics required for reliability-based ultimate limit state (ULS) design; (4) uncertainty associated with the normalized load-displacement curves and the resulting model factor statistics required for reliability-based serviceability limit state (SLS) design; and (5) variations of the combined ULS and SLS model factor statistics for reliability-based limit state designs. The approaches discussed in this study are practical and grounded realistically on the load tests of belled piers with minimal assumptions. The results on the characterization and uncertainty of uplift load-displacement behaviour of belled piers could be served as to extend the early contributions for reliability-based ULS and SLS designs.

Experimental investigation of lateral displacement of PVD-improved deposit

  • Chai, Jin-Chun;Xu, Fang
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.585-599
    • /
    • 2015
  • Laboratory model tests were conducted to investigate the effect of surcharge loading rate on the magnitude of lateral displacement of prefabricated vertical drains (PVDs) improved deposit. The test results indicate that under the condition that the system had sufficient factor of safety (FS) ($FS{\geq}1.2$), for the similar model ground under the same total applied surcharge load, the lateral displacement increases with the increase of loading rate. The test results have been used to check the validity of a previously proposed method for predicting the maximum lateral displacement, and it shows that the data points are around the middle line of the predicted range, which supports the usefulness of the proposed method. The basic idea of the prediction method is an empirical relationship between the normalized lateral displacement (NLD) and a ration of load to the undrained shear strength of the deposit (RLS). The model test results offer some modifications of the NLD-RLS relationship: (1) instead of a bilinear relationship, NLD-RLS relationship may be entirely nonlinear; (2) the upper bound value of RLS for the proposed method can be used may be limited to 2.1 instead of the originally proposed value of 3.0.

Relationship between Curvature Ductility and Displacement Ductility of RC Bridge Circular Columns (철근콘크리트 원형교각의 연성도 상관관계에 관한 연구)

  • 손혁수;조재원;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.111-116
    • /
    • 2002
  • The flexural ductility capacity of reinforced concrete columns can be expressed either in terms of curvature ductility or displacement ductility. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed, which is applicable to the RC columns subjected to seismic loading. The analytical results by using computer program NARCC are in good agreement with the test results. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 RC circular columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed.

  • PDF