• 제목/요약/키워드: Total Ship Computing

검색결과 4건 처리시간 0.018초

개방형 구조(OA)를 이용한 함정체계통합 구축 방법론 : 통합함정컴퓨팅환경(TSCE)기반 아키텍처 구축 및 검증을 중심으로 (A Methodology for the Ship System Integration with Open Architecture : Focusing on the Total Ship Computing Environment based Architecture Building and Validation)

  • 박강수;유병천;김경택;최봉완
    • 산업경영시스템학회지
    • /
    • 제43권3호
    • /
    • pp.68-76
    • /
    • 2020
  • In a series of recent launch tests, North Korea has been improving the firepower of its missiles that can target South Korea. North Korea's missiles and submarines are capable of threatening targets in South Korea and are likely faster and more covert than the systems previously seen in North Korea. The advanced threats require that ROK Navy should not only detect them earlier than ever but also response quicker than ever. In addition to increasing threats, the number of young man that can be enlisted for military service has been dramatically decreasing. To deal with these difficulty, ROK navy has been making various efforts to acquire a SMART warship having enhanced defense capability with fewer human resources. For quick response time with fewer operators, ROK Navy should improve the efficiency of systems and control tower mounted on the ship by promoting the Ship System Integration. Total Ship Computing Environment (TSCE) is a method of providing single computing environment for all ship systems. Though several years have passed since the first proposal of TSCE, limited information has been provided and domestic research on the TSCE is still in its infancy. In this paper, we apply TSCE with open architecture (OA) to solve the problems that ROK Navy is facing in order to meet the requirements for the SMART ship. We first review the level of Ship System Integration of both domestic and foreign ships. Then, based on analyses of integration demands for SMART warship, we apply real time OA to design architecture for TSCE from functional view and physical view. Simulation result shows that the proposed architecture has faster response time than the response time of the existing architecture and satisfies its design requirements.

함정 통제체계의 통합 아키텍쳐 연구 (An Integrated Architecture for Control and Monitoring Systems on Naval Surface Combatants)

  • 오성원
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.103-114
    • /
    • 2018
  • The operational concept of control systems on surface combatants has been changed from individual control for each system to integrated control for all systems due to computing technology development and crew reduction policy of navy. The purpose of this study is to identify current status of control technology, to analyze user requirement and to develop an architecture to support the conceptual change of ship control. An architecture, which integrates several control and monitoring systems on naval surface combatant, is proposed. The proposed architecture is focused on sharing network and computing resources related to user command, and reducing systems complexity. The architecture can be adopted to next surface combatants in Korean navy.

Zumwalt(DDG-1000)급 구축함의 운용 시스템 및 탑재 가능 무기체계 분석을 통한 시사점 도출 (The implication derived from operating control organization and feasible weapon system analysis of Zumwalt(DDG-1000) Class Destroyer)

  • 이형민
    • Strategy21
    • /
    • 통권34호
    • /
    • pp.178-206
    • /
    • 2014
  • The battlefield environment in the maritime has been changed by advanced IT technology, variation of naval warfare condition, and developed military science and technology. In addition, state-of-the-art surface combatants has become to multi-purpose battleship that is heavily armed in order to meet actively in composed future sea battlefield condition and perform multi-purpose missions as well as having capability of strategic strike. To maximize the combat strength and survivability of ship, it is not only possible for Zumwalt(DDG-1000) class combatant to conduct multi-purpose mission with advanced weapon system installation, innovative hull form and upper structure such as deckhouse, shipboard high-powered sensor, total ship computing environment, and integrated power control but it was designed so that can be installed with energy based weapon systems in immediate future. Zumwalt class combatant has been set a high value with enormous threatening surface battleship in the present, it seems to be expected that this ship will be restraint means during operation in the littoral. The advent of Zumwalt class battleship in the US Navy can be constructed as a powerful intention of naval strength building for preparing future warfare. It is required surface ship that can be perform multi-purpose mission when the trend of constructed surface combatants was analyzed. In addition, shipboard system has been continuously modernized to keep the optimized ship and maximize the survivability with high-powered detection and surveillance sensor as well as modularity of combat system to efficient operation.

사용자-서브루틴과 양해법 유한 요소 해석을 이용한 선박의 유빙 저항 추정 (Ice Floe-induced Ship Resistances using Explicit Finite Element Analyses with a User-subroutine)

  • 한동화;백광준;정성엽;정준모
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.88-95
    • /
    • 2020
  • There have been many attempts to predict resistance of vessels in ice floe environment, but they mostly have both strong and weak points at the same time; for instance, simplified formulas are very fast but less flexible to types of ship and ice conditions and other numerical techniques need high computing cost for increased accuracy. A new numerical simulation technique of combining explicit finite element analysis code with a user-subroutine to control real-time forces acting on ice floes was proposed, thereby it was possible to predict ship-to-ice floe resistance with higher convenience and accuracy than other proposed approaches. The basic theory on how real-time hydrostatic and hydrodynamic forces acting on ice floes could be generated using user-subroutine was explained. The heave motion of a single ice floe was simulated using the user-subroutine and the motion amplitudes and periods were almost consistent with analytic values. Towing tests of an icebreaker model ship were simulated using explicit finite element analyses with the user-subroutine. The ice-induced resistance obtained from the towing experiments and simulations showed significant differences. Intentional increase of the drag coefficient to increase the contact duration between the ice floes and rigid model ship leaded the total resistance to be substantially consistent between the model tests and numerical simulations.