• Title/Summary/Keyword: Total Kinetic Energy

Search Result 129, Processing Time 0.025 seconds

A split kinetic energy solution scheme applied to various delta potentials in quantum mechanical systems

  • Chen, Yu-Hsin;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • In this work, we extend the previously developed split kinetic energy (dubbed KEP) method by Mineo and Chao (2012) by modifying the mass parameter to include the negative mass. We first show how to separate the total system into the subsystems with 3 attractive delta potentials by using the KEP method. For repulsive delta potentials, we introduce "negative" mass terms. Two cases are demonstrated using the "negative" mass terms for repulsive delta potential problems in quantum mechanics. Our work shows that the KEP solution scheme can be used to obtain not only the exact energies but also the exact wavefunctions very precisely.

PSYCHO-PHYSICS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.35-38
    • /
    • 2000
  • Conventional atom model must be criticized on the following four points.(1) natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc.(2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The hv is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not changed during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body.New atomic model 9the crystallizing $\pi$-bonding) was proposed in the journal of material processing technology since 1997 for the explanation of the mechanical behaviors in terms of physics. $\prod$-ray physics proved that the electrons can come out from in the nucleus and modern chemistry corresponds to the $\pi$-bonding by the nuclear electrons. The $\pi$-bonding structure of the protons outside the nucleus is that electrons move between protons of the different atoms. The perception step and the characteristic frequency in signal transduction is due to the accumulation of the $\pi$-rays outside of the proton before their absorption to the nucleus.

  • PDF

PSYCHO-PHYSICS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.71-75
    • /
    • 2000
  • Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The hv is the Kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition form outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. New atomic model (the crystallizing $\pi$-bonding) was proposed in the journal of material processing technology since 1997 for the explanation of the mechanical behaviors in terms of physics. $\prod$-ray physics proved that the electrons can come out from in the nucleus and modern chemistry corresponds to the $\pi$-bonding by the nuclear electrons. The $\pi$-bonding structure of the protons outside the nucleus is that electrons move between protons of the different atoms. The perception step and the characteristic frequency in signal transduction is due to the accumulation of the $\pi$-rays outside fo the proton before their absorption to the nucleus.

  • PDF

A VISUALIZATION OF $\prod$-VISIBLE RAYS AND GENERATION OF LIFE

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.76-86
    • /
    • 2000
  • Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The hv is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. $\prod$-rays come out from the crystallizing $\pi$-bondings when they vibrate or deform. Gaston Naessens(1950) invented a microscope, which can visualize the $\pi$-rays in blood. Unordinarily agglomerated spores of $\pi$-rays may provoke poor immunity and bad illness. The agglomerated spores of $\pi$-rays can make closed type $\pi$-bondings in the case of carbohydrates and esters but proteins build open type $\pi$-bondings because the peptide bonds are planar, which principle produces a life.

  • PDF

Evaluation of Loess Capability for Adsorption of Total Nitrogen (T-N) and Total Phosphorous (T-P) in Aqueous Solution

  • Kim, Daeik;Ryoo, Keon Sang;Hong, Yong Pyo;Choi, Jong-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2471-2476
    • /
    • 2014
  • The aim of the present study is to explore the possibility of utilizing loess for the adsorption of total phosphorous (T-P) and total nitrogen (T-N) in water. Batch adsorption studies were performed to evaluate the influences of various factors like initial concentration, contact time and temperature on the adsorption of T-P and T-N. The adsorption data showed that loess is not effective for the adsorption of T-N. However, loess exhibited much higher adsorption capacity for T-P. At concentration of $1.0mgL^{-1}$, approximately 97% of T-P adsorption was achieved by loess. The equilibrium data were fitted well to the Langmuir isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher $R^2$ compared with the pseudo-first-order and intra-particle kinetic model. The theoretical adsorption equilibrium $q_{e,cal}$ from pseudo-second-order kinetic model was relatively similar to the experimental adsorption equilibrium $q_{e,exp}$. The thermodynamic parameters such as free energy ${\Delta}G$, the enthalpy ${\Delta}H$ and the entropy ${\Delta}S$ were also calculated.

Evaluation of Kinetic Energy of Raindrops at Daejeon city using Laser-optical Disdrometer (레이저-옵티컬 디스드로미터를 활용한 대전지역의 강우에너지 특성 평가)

  • LIM, Young Shin;KIM, Jong Wook;KIM, Jin Kwan;PARK, Byong Ik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • To evaluate the kinetic energy of the raindrops, the drop size distribution and the terminal velocity of the raindrops had been measured from January to September 2010 using the laser-optical disdrometer in KIGAM, Daejeon, Korea. The relationship between kinetic energy (KE) and rainfall intensity (I) was computed as logarithmic and exponential model, respectively, under the rainfall intensity of about 142mm/h. The exponential model is more suitable for the relationship of KE-I than the logarithmic model, because the exponential model presented better fit for KE over 50mm/h of rainfall intensity. Meanwhile, the differences of the total kinetic energy existed in rainfall events with almost same total rainfall depth, and KE values of Daejeon at high rainfall intensity underestimated rather than the others under temperate climate. Therefore, these differences of KE in rainfall events and geographical regions imply the result from the variations of rainfall intensity within a rainfall event.

Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors

  • Yoo, Kee-Youn
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.467-479
    • /
    • 2021
  • Abstract: A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.

Optimization Application for Assessment of Total Transfer Capability Using Transient Energy Function in Interconnection Systems (과도에너지 함수를 이용하여 연계계통의 총송전용량 평가를 위한 최적화기법 응용)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Lee, Sang-Keun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2311-2315
    • /
    • 2009
  • This paper presents a method to apply energy margin for assesment of total transfer capability (TTC). In order to calculate energy margin, two values of the transient energy function have to be computed. The first value is transient energy that is the sum of kinetic and potential energy at the end of fault. The second is critical energy that is potential energy at controlling UEP(Unstable Equilibrium Point). It is seen that TTC level is determined by not only bus voltage magnitudes and line thermal limits but also transient stability. TTC assessment is compared by the repeated power flow(RPF) method and optimization method.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

Influence of Fish Habitats by Change of Flow Patterns with Squr Dikes (수제로 인한 흐름변화가 어류서식처에 미치는 영향 검토)

  • Chanjin Jeong;Yong Jun Kwon;Dong Hyun Kim;Hyung Suk Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.109-121
    • /
    • 2023
  • Squr dikes in rivers can enhance various ecological environments, contributing to the improvement of the river's environmental functions. However, the alterations in flow caused by squr dikes not only enhance environmental functions but can also have adverse effects. Therefore, this study aimed to analyze the flow changes induced by the installation of squr dikes through flume experiments and assess their impact on fish habitats. Key factors in the fish habitat environment include flow velocity, turbulence kinetic energy, and recirculation zones. Among these, particular emphasis was placed on examining turbulence kinetic energy and recirculation zones. Experimental conditions were set by varying the interval and submergence of the squr dikes, resulting in a total of eight experimental cases. The results revealed that shorter interval and lower submergence of the squr dikes led to increased turbulence kinetic energy and recirculation zone sizes, significantly impacting fish habitats.