• Title/Summary/Keyword: Total Inventory Cost

Search Result 199, Processing Time 0.019 seconds

A Comparison of EOQ and OMMIP in which Inventory Cost is due to Holding Cost as a Fraction of Unit Cost (재고유지 비율을 고려한 EOQ와 OMMIP 비교)

  • Oh, Sae-Kyung;Kim, Dong-Ki;Choi, Jin-Yeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2008
  • In this paper we suggest the methods that compute the total inventory cost based on EOQ and the total inventory cost based on OMMIP. The total inventory cost consists of purchasing cost, ordering cost, inventory holding cost, stockout cost and so on. This papers also proposes the method that decides optimum order quantity as the order amount to minimize the total inventory cost with comparison of EOQ total inventory cost and OMMIP total inventory cost according to inventory holding cost as a fraction of unit cost.

Determination of Safety Stock in a Multi-Echelon Inventory System (다단계 재고 시스템의 안전재고의 결정)

  • ;;Kim, J. J.;Shim, J. H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • This problem in this paper concerns the determination of safety stock for multi-echelon invenetory system. In this model the criterion is to minimize system safety stock subject to a service level constraint and expected annual total cost. Then, safety stock is determined by minimizing expected annual total cost and satisfying given service level. This expected annual total cost is obtained by expected total inventory holding cost plus the expected total stockout cost. Numerical example is given in a three-echelon inventory system. The results obtained by the use of the Hill Algorithm.

  • PDF

VMI with Upper Limit of Inventory for Vendor and Retailer (판매자와 구매자의 재고상한이 존재하는 VMI)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.105-111
    • /
    • 2017
  • Vendor Managed Inventory is a well-known vendor-retailer coordination approach in supply chain management where the vendor manages inventory of the retailer and determines the order interval and order quantity for the retailer. To consider practical situation, the upper limit of inventory for the retailer is set. If the inventory level for the retailer exceeds the upper limit, then the penalty cost is charged to the retailer. Furthermore, maximum allowable inventory level is set for the vendor to prevent the vendor from keeping much inventory. Single-vendor multi-retailer supply chain model with upper limit of inventory for vendor and retailers is studied. All the retailers' are assumed to have the common cycle time, and a vendor manages retailers' inventory and replenishes products. The mathematical formulation is introduced to minimize the total cost including the penalty cost violating the upper limit of inventory for retailers with the constraint of maximum allowable inventory level. The solution procedure based on Karush-Kuhn-Tucker (KKT) conditions is derived. KKT conditions are often applied to find an optimal solution of nonlinear programming problem with constraints. An illustrative example is used to show the application of the proposed solution procedure. Furthermore, sensitivity analysis is done to find out the relationship between maximum allowable inventory level and other values such as order quantity, the number of shipment, vendor's cost, retailer's cost, and total cost. As maximum allowable inventory level decreases, the number of shipment decreases but total cost increases. Order quantity has the trend of decline and is affected by the number of shipment.

Risk-averse Inventory Model under Fluctuating Purchase Prices (구매가격 변동시 위험을 고려한 재고모형)

  • Yoo, Seuck-Cheun;Park, Chan-Kyoo;Jung, Uk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.4
    • /
    • pp.33-53
    • /
    • 2010
  • When purchase prices of a raw material fluctuate over time, the total purchasing cost is mainly affected by reordering time. Existing researches focus on deciding the right time when the demand for each period is replenished at the lowest cost. However, the decision is based on expected future prices which usually turn out to include some error. This discrepancy between expected prices and actual prices deteriorates the performance of inventory models dealing with fluctuating purchase prices. In this paper, we propose a new inventory model which incorporates not only cost but also risk into making up a replenishment schedule to meet each period's demand. For each replenishment schedule, the risk is defined to be the variance of its total cost. By introducing the risk into the objective function, the variability of the total cost can be mitigated, and eventually more stable replenishment schedule will be obtained. According to experimental results from crude oil inventory management, the proposed model showed better performance over other models in respect of variability and cost.

A Systematic Approach to the Purchase Dependence (구매 종속적 수요에 대한 접근방법의 고찰)

  • Park, Changkyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.70-78
    • /
    • 2020
  • Under the situation which customer orders are cancelled unless all products in the order are delivered all at once, this paper concentrates on the purchase dependent demands and explores the systematic approach to implant the purchase dependence into the multi-product inventory model. First, by acknowledging that it is a challenging task to formulate a suitable inventory model for the purchase dependence, we derive the optimal solution condition using an EOQ model and extend the optimal solution condition to periodic review models. Then, through the comparison simulation of four inventory policies regarding several degrees of purchase dependence, we demonstrate that the inventory models which consider the purchase dependence generate less total cost than the inventory models which ignore the purchase dependence. In general, the inventory models which consider the purchase dependence reduce the loss of sales by maintaining more inventories, which results in reducing the total cost. Consequently, the simulation result supports the effectiveness of this paper's approach. In addition, this paper uses the individual order period and joint order period obtained from the EOQ model for the multi-product inventory model. Through the in-depth analysis of comparing the two models, we observe that the model of using the joint order period produces less total cost when the degree of purchase dependence is high, but the model of using the individual order period produces less total cost when the degree of purchase dependence is low.

A Study on the Inventory Cost Estimation Criteria Considering Supply Chain Characteristics of a Electronic Product Manufacturer (전자제품 제조사 관점에서의 공급사슬 특성을 고려한 재고비용 산정 기준의 제시)

  • Nam, Jung-Hoon;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.15-25
    • /
    • 2016
  • SCM activities in a company are considered as total innovation through synchronizing supply and demand while maintaining appropriate inventory level and reducing the business operating costs. Until now, even several researches are carried out on the SCM performance of the companies which have introduced and been operating SCM, the research on the cost analysis for the inventory which occurs frequently on supply chain is still insufficient. Especially, for the electronics industry in which the product depreciation is sharp caused by the short product life cycle and the complexity of distribution channels, even the inventory related costs are a major factor in business management, since the current estimated criteria of inventory costs are limited to the interest and maintenance management costs, the criteria do not reflect the total influence of the product depreciation and lost opportunity cost which are related to the business management. Furthermore, even though the rapid price drops of the distributor inventory caused by the frequent new model launch can be covered by the product manufacturers, the scale of total costs related to the inventory has not been conceived because the price compensation is traditionally considered as a market costs. In this research, we analyzed the inventory characteristics of electronics industry in which the price depreciation happens frequently, newly defining the estimated criteria of the product total inventory cost which includes price depreciation from the product manufacturers' view. Finally we focus on the case study of a representative electronics company and verify the scale of the influence on management performance.

Dynamic Operation Policy for Vendor-Managed Inventory using Fixed Production Schedule (확정생산스케줄을 활용하는 동적 VMI 운영정책)

  • Hyun, Hye-Mi;Rim, Suk-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.425-432
    • /
    • 2008
  • While the Vendor-Managed Inventory(VMI) is a convenient inventory replenishment policy for the customer company, the supplier usually bears the burden of higher inventory and urgent shipments to avoid shortage. Recently some manufacturers begin to fix the production schedule for the next few days (such as three days). Utilizing that information can improve the efficiency of the VMI. In this study, we present a myopic optimization model using a mixed inter programming; and a heuristics algorithm. We compare the performance of the two proposed methods with the existing (s, S) reorder policy. We consider the total cost as the sum of transportation cost and inventory cost at the customer's site. Numerical tests indicate that the two proposed methods significantly reduce the total cost over the (s, S) policy.

A Study on the (Q, r) Inventory Model under the Lead Time Uncertainty and its Application to the Multi-level Distribution System (주문 인도기간이 불확실한 상황에서의 (Q, r) 재고 부형과 다단계 분배 시스템의 응용에 관한 연구)

  • 강석호;박광태
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.1
    • /
    • pp.44-50
    • /
    • 1986
  • In this paper, we find optimal policy for the (Q, r) inventory model under the lead time uncertainty. The (Q, r) inventory model is such that the fixed order quantity Q is placed whenever the level of on hand stock reaches the reorder point r. We first develop the single level inventory model as the basis for the analysis multi-level distribution systems. The functional problem is to determine when and how much to order in order to minimize the expected total cost per unit time, which includes the set up, inventory holding and inventory shortage cost. The model, then, is extended to the multi-level distribution system consisting of the factory, warehouses and retailers. In this case, we also find an optimal policy which minimizes the total cost of the contralized multi-level distribution system.

  • PDF

Robust Design Method for Complex Stochastic Inventory Model

  • Hwang, In-Keuk;Park, Dong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1999.04a
    • /
    • pp.426-426
    • /
    • 1999
  • ;There are many sources of uncertainty in a typical production and inventory system. There is uncertainty as to how many items customers will demand during the next day, week, month, or year. There is uncertainty about delivery times of the product. Uncertainty exacts a toll from management in a variety of ways. A spurt in a demand or a delay in production may lead to stockouts, with the potential for lost revenue and customer dissatisfaction. Firms typically hold inventory to provide protection against uncertainty. A cushion of inventory on hand allows management to face unexpected demands or delays in delivery with a reduced chance of incurring a stockout. The proposed strategies are used for the design of a probabilistic inventory system. In the traditional approach to the design of an inventory system, the goal is to find the best setting of various inventory control policy parameters such as the re-order level, review period, order quantity, etc. which would minimize the total inventory cost. The goals of the analysis need to be defined, so that robustness becomes an important design criterion. Moreover, one has to conceptualize and identify appropriate noise variables. There are two main goals for the inventory policy design. One is to minimize the average inventory cost and the stockouts. The other is to the variability for the average inventory cost and the stockouts The total average inventory cost is the sum of three components: the ordering cost, the holding cost, and the shortage costs. The shortage costs include the cost of the lost sales, cost of loss of goodwill, cost of customer dissatisfaction, etc. The noise factors for this design problem are identified to be: the mean demand rate and the mean lead time. Both the demand and the lead time are assumed to be normal random variables. Thus robustness for this inventory system is interpreted as insensitivity of the average inventory cost and the stockout to uncontrollable fluctuations in the mean demand rate and mean lead time. To make this inventory system for robustness, the concept of utility theory will be used. Utility theory is an analytical method for making a decision concerning an action to take, given a set of multiple criteria upon which the decision is to be based. Utility theory is appropriate for design having different scale such as demand rate and lead time since utility theory represents different scale across decision making attributes with zero to one ranks, higher preference modeled with a higher rank. Using utility theory, three design strategies, such as distance strategy, response strategy, and priority-based strategy. for the robust inventory system will be developed.loped.

  • PDF

Strategy of Inventory and Inspect of small-to-medium-sized Enterprises which are getting Orders from Large Enterprises using JIT(just in time) System (JIT형의 기업에 납품하는 중소기업의 재고 및 검사 전략)

  • Ree, Sang-Bok;Ahn, Hae-Il;Kim, Kuk
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.584-590
    • /
    • 2000
  • In this paper, we analyze the inventory and inspect cost of small-to-medium-sized enterprises which are getting orders from large enterprises using JIT(just in time) system. So far, we have not found the good inventory and inspect cost formula for the small-to-medium-sized enterprises. In this paper, we first survey the inventory and inspect strategy and cost formula of the small-to-medium-sized enterprises in this country. We are trying to mathematical modelling of several cases depending on the inventory and inspect strategy of large enterprises. We suggest inventory and inspect several cost formula by using the method minimizing the total cost of the small-to-medium-sized enterprises. We also give some numerical examples for your understanding.

  • PDF