• 제목/요약/키워드: Torsional stress

검색결과 250건 처리시간 0.032초

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional Stress Prediction of Turbine Rotor Train Using Stress Model)

  • 이혁순;유성연
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional stress prediction of turbine rotor train using stress model)

  • 이혁순;유성연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF

HVDC단에 연결된 터빈-발전기의 비틀림 스트레스 해석 (Torsional Stress Analysis of Turbine-Generator Connected to HVDC System)

  • 김찬기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.416-426
    • /
    • 2001
  • This paper deals with the impact of an inverter station on the torsional dynamics of turbine-generator which is located at the inverter side of a HVDC-AC network power system. The studies show that the torsional stress of turbine-generator depends on the AC network fault locations because of the commutation failures of inverter station. And the torsional stress induce fatigue in the shaft material and reduce the shaft life-time. So, the purpose of this paper is to analysis the torsional stress of turbine-generator shaft at inverter side, to find the checked points of turbine-generator. The EMTDC program is used for the simulation studies.

  • PDF

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구 (A study on torsional strength of induction hardened axle shaft)

  • 강대현;이범재;윤창배;김강욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF

전달행렬법에 의한 곡선거더교의 비틀림 응력비와 비틀림 정수비에 관한 연구 (A Study on Torsional Stress ratio and Torsional ratio of Curved Girder Bridge by Transfer Matrix Method)

  • 이원홍;이윤영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.173-182
    • /
    • 2006
  • 곡선거더교의 설계에서 I형 병렬, 1박스, 2박스의 거더 형태의 교량은 휨과 비틀림을 동시에 발생함으로 그 응력은 매우 복잡하다. 일반적으로 비틀림은 순수 비틀림과 휨 비틀림으로 구성되어 있으므로 곡선거더교의 발생되는 응력들을 결정하는 절차는 매우 어렵다. 전달행렬법은 이론적인 배경과 적용이 매우 쉬운 장점 때문에 구조해석 분야에서 많이 사용되고 있으며, 유한차분법과 비교하여 신뢰성을 검증하여 좋은 결과를 얻었다. 따라서, 본 연구에서는 I형 병렬 곡선교, 1박스거더 곡선교, 2박스 거더 곡선교에 대한 비틀림 정수비와 비틀림 의한 비틀림 응력비 사이 관계를 비교 검토하여 휨 비틀림에 의한 응력해석을 생략할 수 있는 비틀림 정수비의 한계 값을 분석하였다.

Two-plane Hull Girder Stress Monitoring System for Container Ship

  • Choi Jae-Woong;Kang Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • 제8권4호
    • /
    • pp.17-25
    • /
    • 2004
  • Hull girder stress monitoring system for container ship uses four long-base-strain-gages at mid-ship to monitor the resultant stresses and the applied moment components of horizontal, vertical and torsional moments. The bending moments are estimated by using the conventional strain-moment relations, however, the torsional moment related to the warping strain requires the assumption of the shape of torsional moments over the hull girder. Though this shape could be a sine function with an adequate period, it largely depends upon certain empirical formulas. This paper introduces additional four long-base-strain-gages at mid-ship to derive the longitudinal slope of the warping strain because this slope is directly related to the torsional moment by Bi-moment concept. An open-channel-type cantilever beam has been selected as a simplified model for container ship and the result has proved that the suggested concepts can estimate the torsional component accurately. Finally this method can become reliable technique to derive all external moments in hull girder stress monitoring system for container ships.

비틀림 하중하에서의 튜브형 단면겹치기 접착조인트의 피로파괴모델에 관한 연구 (Fatigue Failure Model for the Adhesively Bonded Tubular Single Lap Joint Under Torsional Fatigue Loadings)

  • 이수정;이대길
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1869-1875
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows a nonlinear relationship between the applied torque and the resulting displacement under the static-torsional loading, which is induced from the nonlinear properties of the adhesive. However the torque transmission capability in the case of the dynamic-torsional loading is much less than that in the case of the static-torsional loading, the stress level of the adhesive is usually in the region of the linear stress and strain relation and the stress distributions of the joint can be obtained by the linear analysis. In this paper, a failure model for the adhesively bonded tubular single lap joint under the torsional fatigue loading was developed with respect to the adhesive thickness that was a critical factor in predicting the static torque transional-cyclic loadings was proposed.

편심 하중에 의한 강철도교 세로보의 비틀림 거동 (Torsional Behavior of the stringer on the Steel Railway Bridge due to Eccentric Loads)

  • 김성남;성익현;김종헌;강영종
    • 한국방재학회 논문집
    • /
    • 제4권4호
    • /
    • pp.63-71
    • /
    • 2004
  • 본 연구의 대상교량은 세로보와 레일의 중심선이 일치하지 않으며 편심거리가 존재한다. 편심이 존재하지 않는 설계-시공이라면 실제 세로보에서는 열차 하중에 의해 휨 응력만이 발생하게 된다. 그러나 실제 설계-시공 상에서는 세로보와 레일의 중심선이 일치하지 않고 이러한 세로보와 레일의 편심에 의해서 침목에 휨이 발생한다. 이에 따라 침목과 연결되어 있는 세로보에는 휨 응력뿐만 아니라 추가로 비틀림 응력도 발생하게 된다. 이러한 비틀림 응력이 세로보 절취부에 미치는 영향과 수직 브레이싱을 설치하였을 경우의 영향에 대해서 분석해 보도록 한다.

Thickness of shear flow path in RC beams at maximum torsional strength

  • Kim, Hyeong-Gook;Lee, Jung-Yoon;Kim, Kil-Hee
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.303-321
    • /
    • 2022
  • The current design equations for predicting the torsional capacity of RC members underestimate the torsional strength of under-reinforced members and overestimate the torsional strength of over-reinforced members. This is because the design equations consider only the yield strength of torsional reinforcement and the cross-sectional properties of members in determining the torsional capacity. This paper presents an analytical model to predict the thickness of shear flow path in RC beams subjected to pure torsion. The analytical model assumes that torsional reinforcement resists torsional moment with a sufficient deformation capacity until concrete fails by crushing. The ACI 318 code is modified by applying analytical results from the proposed model such as the average stress of torsional reinforcement and the effective gross area enclosed by the shear flow path. Comparison of the calculated and observed torsional strengths of existing 129 test beams showed good agreement. Two design variables related to the compressive strength of concrete in the proposed model are approximated for design application. The accuracy of the ACI 318 code for the over-reinforced test beams improved somewhat with the use of the approximations for the average stresses of reinforcements and the effective gross area enclosed by the shear flow path.

원판형 이중 질량 플라이휠의 비틀림 스프링 장치의 응력해석에 관한 연구 (Stress Analysis for Torsional Spring Box of Radial Dual Mass Flywheel)

  • 최병기;노승훈;남욱희;김광수;최성종;이춘열;채영석
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.147-154
    • /
    • 2003
  • Radial Dual Mass Flywheel(RDMF) is designed to reduce torsional vibration and noise occurring in automotive powertrain. In this paper, finite element method is used to evaluate stress level and critical area of the torsional spring box, a major part of RDNF system. In finite element analysis, both static and dynamic loadings are considered and it is found that the most critical spot is the welded zone of spring box. Also, fatigue test is performed and fractured surfaces are examined to find fatigue stress level by experiment.