• Title/Summary/Keyword: Torsional shear tests

Search Result 57, Processing Time 0.026 seconds

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.75-92
    • /
    • 2023
  • The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.

Determinations of P, S-Wave Velocities and Pore Water Pressure Buildup with B-value for Nearly Saturated Sands (비배수 조건에서 반복하중을 받는 사질토의 B값(간극수압계수)에 따른 P파, S파 속도 및 간극수압 측정)

  • Lee, Sei-Hyun;Choo, Yun-Wook;Youn, Jun-Ung;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.71-83
    • /
    • 2007
  • Liquefaction resistance depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The B-value has been widely used to quantify the state of saturation of laboratory samples. However, it is practically impossible to determine in situ state of saturation by using the B-value. So, P-wave velocity can be alternatively used as a convenient index for evaluating the in situ state of saturation. In this paper, the Stokoe type torsional shear (TS) testing system was modified to saturate the specimen, with which it is also possible to measure P ($V_p$), S-wave velocity ($V_s$) and the excess pore water pressure buildup In order to examine the effect of B-value for nearly saturated sands. A series of the tests were carried out at 3 relative densities (40%, 50% and 75%) and various B-values using Toyoura sand. Based on the test results, the variations of $V_p\;and\;V_s$ with B-value were analyzed and compared with a existing theoretically derived formula. The normalized pore water pressure, $du/{\sigma}{_0}'$ and cyclic threshold shear strain, ${\gamma}^c_{th}$ with B-value were also analyzed. Additionally the test results related to pore water pressure were analyzed by $V_p$ to apply to the field seismic analysis.

Evaluation of Modulus of Soils Using Various Laboratory Tests (다양한 실내시험을 이용한 지반의 탄성계수 평가)

  • 권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.345-352
    • /
    • 2000
  • It is very important to evaluate the reliable nonlinear modulus characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. For the evaluation of modulus characteristics of soils, various tests have been mostly employed in laboratory. However, different testing techniques are likely to have different ranges of reliable strain measurements, different applied stress level, and different loading frequencies, and the modulus of soils can be affected by these variables. For reliable evaluation, therefore, those effects on the modulus need to be considered, and measured values should be effectively adjusted to actual conditions where the soil is working. In this paper, to evaluate the modulus characteristics of soils, laboratory testing such as free-free resonant column (FF-RC), resonant column (RC), torsional shear (TS), static TX, and cyclic M/sub R/ tests were performed. The effects of strain amplitude, loading frequency, loading cycles, confining pressure, density, and water content on modulus were investigated. It is shown that the FF-RC test, which is simple and inexpensive testing technique, can provide a reliable estimation of small strain Young's modulus (E/sub max/), and the modulus evaluated by various laboratory tests are comparable to each other fairly well when the effects of these factors are properly taken into account.

  • PDF

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (I) : A Proposal of Methodology (지반의 동적특성에 기초한 액상화 평가법(I) : 이론제안)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • In this study, a new methodology for the assessment of liquefaction potential is proposed. Since there is no data on the liquefaction damage in Korea, the dynamic behavior of fully saturated soils is characterized through laboratory dynamic tests. There are two experimental parameters related to the soil liquefaction resistance characteristics : the one is the index of disturbance determined by $G/G_{max}$ curve and the other is a plastic shear strain trajectory evaluated from stress-strain curve. The proposed methodology takes advantage of the site response analysis based on real earthquake records to determine the driving effect of earthquake. In the evaluation of liquefaction resistance characteristics, it is verified experimentally that the magnitude of cyclic shear stress has no influence on the critical value of plastic shear strain trajectory at which the initial liquefaction occurs. Cyclic triaxial tests under the conditions of various cyclic stress ratios and torsional shear tests are carried out far the purpose of verification. Through this study, the critical value at the initial liquefaction is found unique regardless of the cyclic stress ratio. It is also f3und that liquefaction resistance curve drawn with disturbance and plastic shear strain trajectory can simulate the behavior of fully saturated soils under dynamic loads.

Wind Load Combinations Including Torsion for Rectangular Medium-rise Buildings

  • Stathopoulos, T.;Elsharawy, M.;Galal, K.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.245-255
    • /
    • 2013
  • This paper presents the results of a set of wind tunnel tests carried out to examine wind-induced overall structural loads on rectangular medium-rise buildings. Emphasis was directed towards torsion and its correlation with peak shear forces in transverse and longitudinal directions. Two building models with the same horizontal dimensions but different gabled-roof angles ($0^{\circ}C$ and $45^{\circ}C$) were tested at different full-scale equivalent eave heights (20, 30, 40, 50, and 60 m) in open terrain exposure for all wind directions (every $15^{\circ}C$). Wind-induced pressures were integrated over building surfaces and results were obtained for along-wind force, across-wind force, and torsional moment. Maximum wind force component was given along with the other simultaneously-observed wind force components normalized by the overall peak. The study found that for flat-roofed buildings maximum torsion for winds in transverse direction is associated with 80% of the overall shear force perpendicular to the longer horizontal building dimension; and 45% of the maximum shear occurs perpendicular to the smaller horizontal building dimension. Comparison of the wind tunnel results with current torsion provisions in the American wind standard, the Canadian and European wind codes demonstrate significant discrepancies. Suggested load combination factors were introduced aiming at an adequate evaluation of wind load effects on rectangular medium-rise buildings.

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

Analysis and design for torsion in reinforced and prestressed concrete beams

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.575-590
    • /
    • 2001
  • This paper presents a simplified method for the design and analysis of non-prestressed, partially prestressed, and fully prestressed concrete beams subjected to pure torsion. The proposed model relates the torsional strength to the concrete compressive strength and to the amounts of transverse and longitudinal reinforcement. To check the adequacy of this simple method, the calculated strength and mode of failure are checked against the experimental results of 17 prestressed concrete 66 reinforced concrete beam tests available in the literature, and very good agreement is found. The simplicity of the method is illustrated by two examples, one for design and another for analysis.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

An Experimental Study on the Reinforcing Effects of Mixtures of Vinyl Strip and Cement on the Sand Specimens (비닐스트립-시멘트 혼합 모래시편의 보강효과에 대한 실험연구)

  • Yu, Jeong-Min;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.5-16
    • /
    • 2018
  • The ever-increasing amount of waste vinyl is causing big environmental problems. In particular, those from farming industry are sometimes left on site or even illegally reclaimed due to the lack of environmental concerns and capacity for collection, which worsens the situation. It is, therefore, believed that the recycling of waste vinyl is the most ideal solution in the viewpoint of environmental preservation. In this context, the potential of vinyl strip as a ground reinforcing material is investigated to expand the application of waste vinyl recycling. In this study, a series of uniaxial compression tests and resonant column tests were performed for sand specimens reinforced with vinyl strips and cement to investigate their reinforcing effects on static and dynamic behaviors. The changes in the uniaxial compressive strength (UCS), the shear modulus and the damping ratio according to the mixing ratio of vinyl strips and cements were analysed for sand specimens, having 40% and 60% relative densities, under various mixing conditions. As a result, both the static and dynamic reinforcing effects of vinyl strip-cement mixture were confirmed and the optimum mixing ratio was proposed.

Dynamic Deformational Characteristics of Subgrade Soils with Variations of Capillary Pressure and Water Content (모관흡수력 및 함수비에 따른 노상토의 동적변형특성 연구)

  • 김동수;김민종;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.109-122
    • /
    • 2002
  • The water content of soil near the ground subgrade varies seasonally, and dynamic deformational characteristics of soil are affected by the variation of water content. Contrary to previous studies which used various specimens of different compaction moisture contents, the influences of water content and capillary Pressure on dynamic deformational characteristics of soil were investigated using the given specimen controlling the matric suction. RC/TS(resonant column and torsional shear) testing equipment was modified so that it can control water content with changing capillary pressure(matric suction). RC/TS tests were performed on subgrade soil collected in the KHC(Korea Highway Corporation) test road. In the field, the cross-hole tests were performed and the water contents were measured at the same site to verify the feasibility and applicability of RC/TS test results. As water content decreased, the tendency of increasing shear moduli in field was well matched with laboratory test results.