• 제목/요약/키워드: Torsional shear tests

검색결과 57건 처리시간 0.025초

공진주와 비틂전단시험에 의한 성토지반의 전단파속도 추정에 관한 연구 (Evaluation of Shear Wave Velocity of Engineering Fill by Resonant Column and Torsional Shear Tests)

  • 박종배;심영종;정종석;박용부
    • 토지주택연구
    • /
    • 제2권4호
    • /
    • pp.387-395
    • /
    • 2011
  • 국내 건축구조물의 내진설계기준에 의하면 현장탄성파시험으로 전단파속도를 측정하여 지반을 5종으로 분류하고 이에 의해 건축물에 작용하는 지진하중을 산정하고 있으나 공정상 성토지반에 대해서는 현장탄성파시험을 할 수 없다. 이에 실내에서 간편하게 현장의 상황을 고려하여 전단파속도를 추정할 수 있는 방법을 찾고자 공진주/비틂전단시험과 각종 현장 탄성파 시험결과를 비교 분석하였다. 분석결과 성토체의 구속압을 적절히 고려할 경우 현장탄성파 시험결과와 매우 유사한 결과를 얻을 수 있었다. 또한, 공진주/비틂전단시험에 의해 최대 전단탄성계수와 구속압의 영향평가를 실시한 결과 n값이 0.434~0.561의 일반적 범위의 값을 나타내어 공진주/비틂전단시험으로도 현장지반 전단탄성계수를 유용하게 추정할 수 있는 것으로 나타났다.

대변형율 시험을 위한 공진주/비틂전단 시험기의 해결방안 (A Solution to Large Strain Resonant Column and Torsional Shear Tests Apparatus)

  • 배윤신
    • 대한토목학회논문집
    • /
    • 제31권3C호
    • /
    • pp.103-108
    • /
    • 2011
  • 본 연구에서는 대변형율 시험을 위한 공진주/비틂전단 시험기의 한계점과 해결방안을 기술하였다. 대변형율 시험의 세가지 한계점은 첫째, 시험기의 제한된 회전거리이며 둘째, 시험기의 제한된 비틂력과 셋째, 변형측정 시스템의 한계 등이 있다. 대변형율 시험의 제한요소 중에서 시험기의 제한된 회전거리를 해결하기 위하여 시료 받침대를 개량하였으며 비틂력을 향상 시키기 위하여 가진기 팔의 개수를 증가시키고 가진기 코일의 연결방법을 변경하여 보다 강한 비틂력을 얻을 수 있었다.

공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성 (Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment)

  • 김동수
    • 한국지반공학회지:지반
    • /
    • 제11권1호
    • /
    • pp.101-112
    • /
    • 1995
  • 동적하중을 받는 지반-구조물 시스템의 설계를 위해 전단탄성계수와 감쇠비로 표현되는 지반의 변형특성의 결정은 매우 중요하다. 본 논문에서는 공진주/비틂전단시험기를 이용하여 저변형률 및 중간 변형률하에서 건조사질토의 변형특성을 연구하였다. 동적시험인 공진주시험과 반복시험인 비틀전단시험을 동일한 공시 체를 이용하여 실시하였다. 진동측정시스템을 개량하여 응력 -변형관계가 하중반복회수와 전단변형률의 크기에 영향을 받지않는 선형영역을 찾았으며 이 영역에서 이력감쇠가 존재함을 나타내었다. 반복한계변형률 이상에서는 하중반복회수에 따라 전단탄성계수는 증가하고 감쇠비는 감소하였다. 사질토의 전단탄성계수와 감쇠비는 진동주파수에 영향을 받지 않으며 의사정적시험인 비틈전단시험에서 변형특성과 동적시험인 공진주 시험에서 얻은 값은 비교시 하중반복회수의 영향을 고려하면 동일하다. 그러므로 공진주l비틀전단시 험을 통해 얻은 변형특성은 지반-구조물시스템의 동적해석은 물론 정적해석에서도 적용할 수 있다.

  • PDF

철도 강화노반재료의 정ㆍ동적 특성 분석 (Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials)

  • 황선근;신민호;이성혁;이시한;최찬용
    • 한국철도학회논문집
    • /
    • 제3권1호
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

  • Zou, Lianghao;Xu, Guoji;Cai, C.S.;Liang, Shuguo
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.231-251
    • /
    • 2016
  • This paper presents the experimental results of the wind tunnel tests for three symmetric, rectangular, tall building models on a typical open terrain considering the torsional motion-induced vibrations. The time histories of the wind pressure on these models under different reduced wind speeds and torsional amplitudes are obtained through the multiple point synchronous scanning pressure technique. Thereafter, the characteristics of both the Root Mean Square (RMS) coefficients and the spectra of the base shear/torque in the along-wind, across-wind, and torsional directions, respectively, are discussed. The results show that the RMS coefficients of the base shear/torque vary in the three directions with both the reduced wind speeds and the torsional vibration amplitudes. The variation of the RMS coefficients in the along-wind direction results mainly from the change of the aerodynamic forces, but sometimes from aeroelastic effects induced by torsional vibration. However, the variations of the RMS coefficients in the across-wind and torsional directions are caused by more equal weights of both the aerodynamic forces and the aeroelastic effects. As such, for the typical tall buildings, the modification of the aerodynamic forces in the along-wind, across-wind, and torsional directions, respectively, and the aeroelastic effects in the across-wind and torsional directions should be considered. It is identified that the torsional vibration amplitudes and the reduced wind speeds are two significant parameters for the aerodynamic forces on the structures in the three directions.

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동 (Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels)

  • 김용진;김양곤;신상용;이성학
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

현장 및 실내시험에 기초한 홍성지역 지진응답특성 평가 (Evaluation of Seismic Response Characteristics of Hong-Seong Area based on In-Situ and Laboratory Tests)

  • 박덕근;김교원
    • 지질공학
    • /
    • 제11권1호
    • /
    • pp.25-35
    • /
    • 2001
  • 충청남도 홍성지역의 부지응답특성 평가를 위한 연구를 수행하기 위하여 다운홀 및 SASW 기법 등의 현장시험과 공진주/비틂전단시험 등 실내시험을 수행하였다. 이를 바탕으로 홍성지역의 부지특성을 평가하고 지반응답해석을 실시하였다. 홍성지역 현장은 지반은, 상부토층 30m의 평균전단파 속도가 209m/s로 SD 지반으로 결정되었고 응답해석결과 국내 기준과 잘 일치되는 부분도 있었으나, 구조물 주기에 따른 응답스펙트롬의 특정 주기에서 국내 기준보다 크게 증폭되는 현상도 발견되었다.

  • PDF

입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구 (Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength)

  • 최문규;서경범;박성용;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF