• Title/Summary/Keyword: Torsional load

Search Result 328, Processing Time 0.038 seconds

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.

Comparative Study on the Application of Direct Analysis Method to Large Container Carriers (대형 컨테이너선의 직접해석법에 관한 비교 연구)

  • Ryu Hong-Ryeul;Lee Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.484-493
    • /
    • 2006
  • Recently, direct load analysis using ship motion program is required to confirm structural safety for the Post-Panamax class large container carrier. However, there is no exact comparative study data for structural response between 20 and 30 wave load. So, in this paper, to compare the hull girder stress response between 20 versus 3D wave load calculation method, direct load analysis and global F.E analysis have been performed for three kinds of large container vessels using each 20 and 30 wave load calculation program. The results of 2D wave load RAO(Response Amplitude Operator) of each dominant load parameter(vertical, torsional and horizontal moment) are generally bigger than that of 30 results, especially in vertical wave bending moment. And the results of structural analysis based on the equivalent design wave method shows that there is a big difference in view of stress, but the stress distribution is very similar for each wave load case.

A study of decomposition of applied eccentric load for multi-cell trapezoidal box girders (편심하중이 작용하는 제형 다실박스거더에서의 거동분리연구)

  • Kim Seung Jun;Han Keum Ho;Park Nam hoi;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.229-234
    • /
    • 2005
  • Thin-walled multicell box girders subjected to an eccentric load can he produced the three global behaviors of flexure, torsion, and distortion. Specially in railway bridges subjected to much eccentric load, it is quite important to evaluate influences of torsion and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces. we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is reserched by Park, Nam- Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about trapezoidal multi-cell section is insufficient. So, this paper deals with multi-cell trapezoidal box girders. An expanded method, which is based on the force decomposition method for a single cell box girder given by Nakai and Yoo, is developed herein to decompose eccentric load Pinto flexural, torsional, and distortional forces. Derive formulas by decomposition of eccentric load is verified by 3D shell-modelling numerical analysis.

  • PDF

Lateral- Torsional Buckling Strength of Monosymmetric Doubly Stepped I-Beam subjected to Pure Bending (순수 휨하중을 받는 일축대칭 양단스텝보의 횡-비틀림 좌굴 강도)

  • Park, Jong-Sup;Oh, Jeong-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1020-1025
    • /
    • 2009
  • This study investigates elastic lateral-torsional buckling(LTB) of monosymmetric doubly stepped I-beams subjected to pure bending based on finite element analysis(FEA). The results from the FEA are used for new design stepped equation, Cst. The equations are compared with the results from the FEA. The comparison indicates that the new equation provides a good relation with the FEA results. The maximum difference between two results is of 11%. The new equation could be easily used to calculate the elastic lateral-torsional buckling moment resistance of monosymmetric stepped I-beams and to expand the new equation for developing LTB equations of monosymmetric stepped beams subjected to general loading conditions such as a concentrated load, distributed load, or a seres of concentrated load.

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

A Study of Torsional and Distortional Analysis of Thin-walled Multicell Box Girder Using Shell Elements (쉘요소를 이용한 박판다실박스거더에서의 비틀림과 뒤틀림 해석기법 연구)

  • Kim, Seung-Jun;Park, Jong-Sub;Kim, Sung-Nam;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.71-74
    • /
    • 2007
  • Thin-walled multicell box girders subjected to an eccentric load can be produced the three global behaviors of flexure, torsion, and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces, we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is researched by Park, Nam-Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about thin-walled trapezoidal multi-cell section is insufficient. So, this paper deals with decomposition process and independent analysis method of multi-cell box girders include trapezoidal section.

  • PDF

Behavior of Integrated Column and Foundation by Field Load Tests (기초와 기둥 통합구조물의 현장시험 및 거동)

  • Yoon, Yeo-Won;Kim, Keun-Soo;Min, Kwang-Hong;Lee, Young-Ho;Kim, Dae-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1073-1076
    • /
    • 2010
  • Shallow foundations of various columns such as traffic signs, CCTVs, traffic lights, street lights, steel telephone poles and so on are made by cast-in-situ concrete method. However, typical cast-in-situ method has many problems because of the long duration of construction, occupation of sidewalks and low strength of the concrete after curing. In order to solve the problems, field load tests for the prefabricated DSF foundation made by combination of column and foundation was conducted to know load-deformation behavior by torsional tests.

  • PDF

Strain Decomposition Method in Hull Stress Monitoring System for Container Ship

  • Park, Jae-Woong;Kang, Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.56-65
    • /
    • 2003
  • The hull monitoring systems of container ships with four long-base gages give enough information for identifying the hull girder loads such as bending and torsional moments. But such a load-identification for container ships has not been known. In this paper, a load-identification method is suggested in terms of a linear matrix equation that the measured strain vector equals to the multiplication of the transformation matrix and the desired strain component vector. The equation is proved to be mathematically complete by the property of positive-definite determinant of the transformation matrix. The method is applied to a hull stress monitoring system for 8100TED container ship during sea trial, and the estimated external loads illustrate reasonable results in comparison with the pre-estimated results. This moment decomposition concept has also been tested in real operation conditions. The typical phenomena over the Suez Canal illustrated very suitable results comparing with the physical understandings. Henceforth, one can effectively use the proposed concept to monitor the hull girder loads such as bending and torsional moments.

Torsional Behavior of Reinforced Concrete Multi-Story Building under Seismic Loading

  • Hong, Sung-Gul;Moritz, Alex P.;Kim, NamHee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.314-321
    • /
    • 2000
  • Excessive torsional behavior of asymmetric building structures is observed to be the main cause of the poor seismic performance. Concepts of current design provisions for torsion are based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. This paper investigates inelastic torsional effects of multi-story high rise residential building in Korea on increase of strength demand and ductility of members using some methods published in literature. The methods analyze the reduction of strength and member ductility resulting from torsional mechanisms. This study shows that use of these concepts control inelastic torsion during preliminary seismic design of multi-story building of irregular plans.

  • PDF

A Study on the System Parameters to Reduce the Idle Gear Rattle (기어 래틀 저감을 위한 시스템 파라미터 연구)

  • 안병민;장일도;최은오;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF