• Title/Summary/Keyword: Torsional load

Search Result 333, Processing Time 0.023 seconds

Arthroscopic Rotator Cuff Repair: Double Rows & Suture Bridge Technique (관절경적 회전근 개 봉합술: 이열 봉합술 및 교량형 봉합술식)

  • Shin, Sang-Jin
    • Clinics in Shoulder and Elbow
    • /
    • v.11 no.2
    • /
    • pp.82-89
    • /
    • 2008
  • Ideal rotator cuff repair is to maintain high fixation strength and minimize gap formation for optimizing the environment of biologic healing of tendon to bone. Among the current repair techniques, the suture bridge technique is superior to single- or double-row repair in ultimate load to failure, gap formation, restoring anatomical footprint and achieving pressurized contact area. The suture bridge technique also minimizes gap formation and has rotational and torsional resistances allowing early rehabilitation. However, despite superior biomechanical characteristics of the suture bridge technique, there is no evidence that these mechanical advantages result in better clinical outcomes. Furthermore, there is no difference in failure rates between the double-row repair and suture bridge techniques. An appropriate repair technique should be determined based on tear size and pattern and tendon quality.

Nonlinear Analysis of 3-D Steel Frames (3차원 강뼈대구조의 비선형 해석)

  • Kim, Seung Eock;Kim, Yo Suk;Choi, Se Hyu;Kim, Sung Mo;Choi, Joon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.417-424
    • /
    • 1999
  • In this paper a nonlinear analysis of three-dimensional steel frames is developed. This analysis accounts for material and geometric nonlinearities. The material nonlinearity includes gradual yielding associated with flexural behaviors. The geometric nonlinearity includes the second-order effects associated with $P-{\delta}\;and\;P-{\Delta}$ effects. The material nonlinearity at the node is considered using the concept of P-M hinge consisting of many fibers. The geometric nonlinearity is considered by the use of stability function. The nonlinearity caused by shear and torsional interaction effects is neglected. The modified incremental displacement method is used as the solution technique. The load-displacements predicted by the proposed analysis compare well with those given by other approaches.

  • PDF

A program development for the instability analysis of aircraft skin- stringer panel (항공기 스킨-스트링거 패널 구조물에 대한 불안정성 해석 프로그램 개발)

  • Park, Chan-Woo;Kim, Hyoun-Rea;Won, Tae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.92-100
    • /
    • 2005
  • An aircraft wing or fuselage panel of skin-stringer assembly can fail in a variety of instable modes under compression loads. Instability modes can be buckling of the panel, local buckling of the stringer, flexure, torsion, wrinkle and combined flexural/torsional buckling of the panel assembly. Although researches on these buckling behaviors have been carried out for a long time, there are some difficulties to apply to the practice because of complex theoretical and empirical equations. Accordingly, It is well known that leading aerospace companies are using their own in-house programs for the convenience of practical usage, but our domestic situation is that no such program has been ever developed. In this study a comprehensive program has been developed, which can identify the instability modes and the magnitude of reserve factor of the modes for the skin/stringer panel assembly under compression load. The developed program is based on the theory manual of the Airbus program APA114. For the verification, calculation of the instable reserve factors for the A320 wing panel and A380 low wing panel sections were carried out and compared with results by APA114.

Seismic response estimation of steel buildings with deep columns and PMRF

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel E.;Gaxiola-Camacho, Jose R.;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.471-495
    • /
    • 2014
  • The responses of steel buildings with perimeter moment resisting frames (PMRF) with medium size columns (W14) are estimated and compared with those of buildings with deep columns (W27), which are selected according to two criteria: equivalent resistance and equivalent weight. It is shown that buildings with W27 columns have no problems of lateral torsional, local or shear buckling in panel zone. Whether the response is larger for W14 or W27 columns, depends on the level of deformation, the response parameter and the structural modeling under consideration. Modeling buildings as two-dimensional structures result in an overestimation of the response. For multiple response parameters, the W14 columns produce larger responses for elastic behavior. The axial load on columns may be significantly larger for the buildings with W14 columns. The interstory displacements are always larger for W14 columns, particularly for equivalent weight and plane models, implying that using deep columns helps to reduce interstory displacements. This is particularly important for tall buildings where the design is usually controlled by the drift limit state. The interstory shears in interior gravity frames (GF) are significantly reduced when deep columns are used. This helps to counteract the no conservative effect that results in design practice, when lateral seismic loads are not considered in GF of steel buildings with PMRF. Thus, the behavior of steel buildings with deep columns, in general, may be superior to that of buildings with medium columns, using less weight and representing, therefore, a lower cost.

An Elasto-Plastic Analysis of Steel Grillages (강격자항(鋼格子桁)의 탄소성(彈塑性) 해석(解析))

  • Shin, Yung Kee;Lee, Jong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.21-30
    • /
    • 1986
  • A method for elasto-plastic analysis of grillages is proposed in this investigation. An effort to construct the stiffness matrix of the member with bending and torsional springs attached at both ends is made in this work to make each member of grillage behave elasto-plastically. A related computer program EPAG for elasto-plastic analysis of grillages is also developed. The characters of this program in comparison with existing methods are as fellows; grillage with arbitrary geometry can be analysed, collapse load is applied in one step instead of incremental procedure, unloading can be considered, and analysis results such as applied loads, member end forces and joint displacements are also obtained when individual plastic hinge is formed. For verification of performanse of the EPAG, illustrating examples are solved and compared with the results of specified literlatures.

  • PDF

Study on Application of Equivalent Stiffness Modeling Method for Static Aeroelastic Analysis of Large Scale Wind Turbine Rotor System (대형 풍력로터시스템의 정적 공탄성해석을 위한 등가강성모델링 기법 적용에 관한 연구)

  • Cha, Jin-Hyun;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1236-1244
    • /
    • 2012
  • A equivalent stiffness modeling has been performed for extracting the equivalent stiffness properties which are orthotropic elastic model from a large scale wind turbine rotor blade so that structure model can be constructed more simply for the three dimensional static aeroelastic analysis. In order to present the procedure of equivalent stiffness modeling, NREL 5MW class wind turbine rotor having the three stiffness information which are flapewise, edgewise and torsional stiffness was chosen. This method is based on applying unit moment at the tip of the blade as well as fixing all degree of freedom at the blade root and calculating the displacement from the load analysis to obtain the elastic modulus corresponding to equivalent stiffness referred to the NREL reports on blade divided into 5 sections respectively. In addition, one section was divided into 3 parts and the trend functions were used to make the equivalent stiffness model more correctly and quickly. Through the comparison of stiffness between the reference values and calculated values from equivalent stiffness model, the investigation of the accuracy on the stiffness values and the efficiency for constructing the model was conducted.

Biomechanical Behaviors of Disc Degeneration on Bending Loads (굽힘하중에 대한 퇴행성 추간판의 생체역학적 특성 분석)

  • Lee, Hyun-Ok;Lee, Sung-Jae;Shin, Jung-Woog
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2001
  • Aging has been recognized as the primary cause of disc degeneration. A biomechanical characteristics of disc degeneration has been demonstrated that intradiscal pressure is reduced. With the increasing population of elderly people, disc degeneration and associated problems of nerve entrapment are becoming more prevalent. Presently, research on reduced intradiscal pressure associated with degeneration is insufficient. In this study. we used the Finite Element Method (FEM) of computerized simulations to investigate the effects of variation in intradiscal pressure on mechanical behaviours of L4-5 intervertebral disc degeneration. Degeneration was classified using four grades based on initial intradiscal pressure; Normal (135 kPa), mild(107 kPa), moderate (47 kPa) and severe (15 kPa). The predicted results f3r bending loads were as follows; 1 . Range of motion increased progressively with severity of degeneration with flexion and lateral bending moments, but decreased with extension moments. 2. Discal bulging of posterolateral aspect was larger in lateral bending and extension moment. But bulging was increased with severity of degeneration in lateral bending and torsion(same side).3. The rate of increasing intradiscal pressure was decreased in all bending motions with severity of degeneration. In conclusion, lateral bending and extension moment yield greatest bulging in severe degeneration. In torsion, although bending load produces disc bulging, disc bulging was associated more strongly with severity of degeneration than increasing torsional moments. Clinical Implications: Discal bulging may produce nerve root impingement and irritation. The effect of loading and posture on the varying degrees of disc degeneration has important implications especially in the elderly. In the presence of disc degeneration, avoidance of end range postures, especially extension and lateral bending may help reduce discal bulging and in turn, nerve entrapment.

  • PDF

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토-)

  • Park, Jung Min;Kim, Wha Jung;Moon, Tae Sup;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Evaluation of Structural Integrity of the ISO-based Moon Pool Type Diver Boats (ISO 기반 Moon Pool형 다이버 보트 구조 건전성 평가)

  • Kang, Byoung-mo;Oh, Woo-jun;Na, Hyun-ho;Choi, Ju-seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 2018
  • This Study investigates the Structural Integrity of Boats for Divers, given increased demands for Underwater and Recreational use. We conducted research on a Small Catamaran with a Moon Pool in the center of the Hull, using the Finite Element Method to calculate allowable stress based on the ISO Rule. We computed the coefficients defined in ISO 12215-5 and TC118.1225-7, and determined the suitability of using the ISO Standard and Allowable Stress Design method (ASD) by applying Longitudinal Bending Moment, Torsional moment, and Bottom Slamming Load. We also applied the Ultimate Strength Design Method (LFRD) using Finite Element Analysis (FEA). As a Result of this Research, it was found that ships with a Moon Pool do have Structural Integrity according to their Design in accordance with ISO and KR Regulations.

A Model for Simplified 3-dimensional Analysis of High-speed Train Vehicle (TGV)-Bridge Interactions (고속철도차량(TGV)-교량 상호작용의 단순화된 3차원 해석모델)

  • 최창근;송명관;양신추
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • The simplified model for 3-dimensional analysis of vehicle-bridge interactions is presented in this study. By using the analysis model which includes the eccentricity of axle loads and the effect of the torsional forces acting on the bridge, the more accurate analysis results of the behavior of the bridge can be obtained. The equations of kinetic energy, potential energy and damping energy are expressed by degrees of freedom of the vehicle and the bridge. And then by applying Lagrange's equations of motion, the equations of motion of the vehicle and the bridge are obtained. By deriving the equations of forces acting on the bridge considering the vehicle-bridge vertical interactions and also by identifying the position of vehicle as time goes by, mass matrix, stiffness matrix, damping matrix and load vector of vehicle-bridge system are constructed in accordance with the position of vehicles. Then using Newmark's β-method(average acceleration), the equations of motion for the total vehicle bridge system are solved.

  • PDF