• 제목/요약/키워드: Torsional Characteristics

검색결과 351건 처리시간 0.029초

비틀림 진동 변환기용 압전 원판의 진동특성 해석 (Vibration Characteristics Analysis of a Piezoelectric Disc or Torsional Transducers)

  • 이정현;김진오
    • 한국소음진동공학회논문집
    • /
    • 제15권12호
    • /
    • pp.1416-1421
    • /
    • 2005
  • This paper presents an analytical approach for the vibration characteristics of a piezoelectric disc for torsional vibration transducers. The characteristic equation of the piezoelectric annular disc has been derived from Gibbs' free energy equations and mechanical and electrical equilibrium. With an anisotropic material properties of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results have been compared with the results obtained by the finite element analysis and experiments and have confirmed the validity of the theoretical analysis.

비대칭 건물의 거동 개선을 위한 점탄성 감쇠기의 활용에 관한 연구 (Effects of Viscoelastic Dampers on the Improvement of Torsional Response of Asymmetric Buildings)

  • 김진구;방성혁;이진수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.249-256
    • /
    • 2000
  • The visco-elastic dampers were used to improve the torsional responses of an asymmetric buildings. The modal characteristic equation of an asymmetric structure with added viscoelastic dampers were derived using the complex modal analysis method. Parametric study has been performed based on the modal characteristics, and the appropriate condition for compensating the stiffness eccentricity was investigated. According to the results the torsional response of the asymmetric buildings could be improved significantly once the dampers were properly placed

  • PDF

비틀림 변환기용 압전 원판의 진동 해석 (Vibration Analysis of a Piezoelectric Disc for a Torsional Transducer)

  • 이정현;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.911-914
    • /
    • 2005
  • The vibrational characteristics of the piezoelectric disc for a torsional vibration transducer is theoretically studied in this paper. The characteristic equation of the piezoelectric annular disc has been derived from Newton's End law and Gibb's free energy equations. With an anisotropic material property of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results were compared with the values obtained by finite element analysis and experiments

  • PDF

배관에서의 특정 비틀림 초음파 모드 송수신을 위한 합성 위상 조절 기법 (Synthetic Phase Tuning Technique for the Transduction of a Specific Ultrasonic Torsional Mode in a Pipe)

  • 김회웅;권영의;주영상;김종범;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제23권3호
    • /
    • pp.249-257
    • /
    • 2013
  • This study newly presents a synthetic phase tuning technique to suppress the unwanted torsional mode while enhancing the desired torsional mode in a pipe. Specifically, we aim at the enhancement of the first torsional mode and the suppression of the undesired, second torsional mode. Earlier efforts were to enhance the desired wave mode only in the hope that the enhancement results in the suppression of the unwanted wave mode. Unlike these efforts, the suggested technique makes the complete cancellation of the unwanted wave mode but it is shown to enhance the desired first mode for torsional wave problems. In the present study, the synthetic phase tuning is developed for the cancellation of the unwanted wave mode, meaning that the number of necessary experimental equipments is reduced. Simulation and experiment were carried out to check the effectiveness of the proposed method. As an application of the suggested technique, we investigated the reflection and mode conversion characteristics of the first torsional mode according to the step thickness variation in a stepped pipe.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.467-482
    • /
    • 2022
  • In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

MsS Guided Wave를 이용한 결함 신호의 분석에 관한 연구 (A Study on MsS Guided Wave Scattering from Defects)

  • 최부일;조윤호;이준현;신동철
    • 비파괴검사학회지
    • /
    • 제29권5호
    • /
    • pp.442-449
    • /
    • 2009
  • 스테인레스 스틸 배관의 결함에 대한 MsS의 비틀림모드 신호와 BEM 모델링의 SH모드 신호의 특성을 살펴보았다. 비틀림모드 신호와 SH모드신호의 비교를 위해 스테인레스 스틸 배관의 결함은 깊이와 폭을 달리하면서 원주방향으로 360도 가공하였다. MsS의 비틀림모드 신호분석 결과 원주방향 결함을 모두 탐지하였으며 깊이 변화에 따라 신호 진폭의 변화가 확인되었다. 하지만 원주방향 결함의 폭 변화는 일정한 경향이 나타나지 않았다. BEM 모델링의 SH 모드 신호 분석 결과 깊이 변화의 경우 비틀림모드 신호와 유사한 결과가 나타났지만, 폭 변화는 신호 진폭의 변화가 일어났다. 본 연구를 통하여 배관의 원주방향 결함에 대한 비틀림모드와 SH모드의 비교 분석을 통하여 신호 특성을 확인하였고 배관의 축대칭 결함에 대해 SH모드 모델링으로도 신호 예측이 가능함을 알 수 있었다.

Wind Turbine Simulator Including Pitch Angle control, Shaft Torsional Vibration and Tower Effect

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.411-413
    • /
    • 2005
  • This paper proposes a modeling of wind turbine simulator which includes the dynamic characteristics such as pitch angle control, torsional vibration, and tower effect. Simulation results using PSCAD are provided to show the wind turbine simulator performance.

  • PDF