• Title/Summary/Keyword: Torsion vibration

Search Result 145, Processing Time 0.027 seconds

Dynamic analysis of bending-torsion coupled vibration of non-symmetric beam (비대칭 보의 굽힘-비틀림 연성 진동 해석)

  • 강병식;홍성욱;박중윤;조용주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.220-225
    • /
    • 2001
  • Asymmetric beams cause complicated vibration phenomena due to the inherent bending-torsion coupled vibration. In this paper, an exact dynamic element matrix for the bending-torsion coupled vibration of asymmetric beam is derived. An application of the derived exact dynamic element matrix is demonstrated by an illustrative example, wherein the natural frequencies by the proposed modeling method are compared with those available in the literature. Another numerical example is also illustrated which deals with a general beam with joints. The numerical study shows that the exact dynamic element model is useful for the dynamic analysis of asymmetric bending-torsion coupled beams.

  • PDF

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

A study on characteristics according to the parameter variation for hybrid shaft design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Dong-Pyo;Kim, Hyun-Sik;Hong, Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF

Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam (차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계)

  • 이춘승;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

Vibration Analysis Model Development of the Solid Axles (일체형 차축의 진동 해석 모델 개발)

  • Jun, Kab-Jin;Choi, Sung-Jin;Park, Tae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.147-150
    • /
    • 2005
  • The torsion beam axle type is widely used in the rear suspension for small passenger car because of low cost, good performance and etc. The FE and dynamic analysis using the computer are very helpful for the efficiency of the torsion beam design. First of all, the reliability on the computational model must be verified for the analysis. In this study, The FE model of the torsion beam was verified according to comparison with he test data. And after making the flexible body using the FE model, the dynamic characteristic of the tubular type torsion beam axles was compared with that of the V-beam type.

  • PDF

Exact Solutions for Bending-Torsion Coupled Vibration of Composite Timoshenko Beam (복합재 티모센코 보의 굽힘 비틀림 연성 진동에 대한 엄밀해)

  • Hong, Seong-Uk;Gang, Byeong-Sik;Park, Jung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1559-1566
    • /
    • 2001
  • This paper proposes a dynamic analysis method for obtaining exact solutions of composite Timoshenko beams, which are inherently subjected to both the bending , and torsional vibrations. In this paper, the bending-torsion coupled vibration of composite Timoshenko beam is rigorously modelled and analyzed. Two numerical examples are provided to validate and illustrate the bending-torsion coupled vibration of composite Timoshenko beam structure. The numerical examples prove that the proposed method is of great use for the dynamic analysis of dynamic structures composed of multiply connected composite Timoshenko beams.

The Vibration Suppressible Method with Estimated Torsion Torque Feedback in Fuzzy Controller

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Bong-Gi
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.421-424
    • /
    • 2008
  • In torque transmission system, we must suppressed vibration for Accuracy characteristic response of motor, Therefore, vibration suppression factor is very important motor control. To suppress vibration, a various control method has been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By the estimated torsion torque feedback, vibration can be suppressed. The CDM(coefficient diagram method) is used to design the filter and Proportional controller. But using coefficient diagram method, not adapted controller parameter in disturbance. For this solution, we used fuzzy controller for auto tuning controller parameter. We proved this approach is confirmed by simulation.

The Design of Adaptive Fuzzy Controller for Vibration Suppression

  • Kim, Seung-Cheol;Sul, Jae-Hoon;Park, Jae-Hyung;Lim, Young-Do;Park, Book-Kwi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.2-41
    • /
    • 2001
  • A torque transmission system, which is composed of several gears and couplings, is flexible. Therefore, the torsion vibration occurs when the motor speed abruptly changes. Consequently, for Accuracy characteristic response of motor, we must suppressed vibration. Therefore, vibration suppression is very important motor control. To vibration suppression, various control method have been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By feedback of the estimated torsion torque, the vibration can be suppressed The coefficient diagram method is used to design the filter and proportional controller.

  • PDF

Dynamic Analysis of Asymmetric Bending-torsion Coupled Beam Using Exact Dynamic Elements (엄밀한 동적 요소를 이용한 비대칭 굽힘-비틀림 연성 보의 동적 해석)

  • Hong, Seong-Uk;Gang, Byeong-Sik;Jo, Yong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.87-95
    • /
    • 2001
  • Although asymmetric beams are widely used in industry, few research results are available on the dynamic modeling and analysis of structure including asymmetric beams. Asymmetric beams cause complicated vibration phenomena due to the inherent bending-torsion coupled vibration. In this paper, an exact dynamic element matrix for the bending-torsion coupled vibration of asymmetric beam is derived. The application of the derived exact dynamic element matrix is demonstrated by some illustrative examples wherein the natural frequencies by the proposed modeling method are compared with those available in the literature. Another numerical example is also illustrated which deals with a general beam with joints. The numerical study shows that the exact dynamic element model is useful for the dynamic analysis of asymmetric bending-torsion coupled beams.

  • PDF

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.