• 제목/요약/키워드: Torsion beam

검색결과 174건 처리시간 0.024초

Effective torsional strength of axially restricted RC beams

  • Taborda, Catia S.B.;Bernardo, Luis F.A.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.465-479
    • /
    • 2018
  • In a previous study, design charts where proposed to help the torsional design of axially restricted reinforced concrete (RC) beams with squared cross section. In this article, new design charts are proposed to cover RC beams with rectangular cross section. The influence of the height to width ratio of the cross section on the behavior of RC beams under torsion is firstly shown by using theoretical and experimental results. Next, the effective torsional strength of a reference RC beam is computed for several values and combinations of the study variables, namely: height to width ratio of the cross section, concrete compressive strength, torsional reinforcement ratio and level of the axial restraint. To compute the torsional strength, the modified Variable Angle Truss Model for axially restricted RC beams is used. Then, an extensive parametric analysis based on multivariable and nonlinear correlation analysis is performed to obtain nonlinear regression equations which allow to build the new design charts. These charts allow to correct the torsional strength in order to consider the favourable influence of the compressive axial stress that arises from the axial restraint.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.

General Purpose Cross-section Analysis Program for Composite Rotor Blades

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Do-Hyung;Yun, Chul-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.77-85
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with arbitrary cross-section profiles and material distributions. The modulus weighted approach is used to take into account the non-homogeneous material characteristics of advanced blades. The CLPT (Classical Lamination Plate Theory) is applied to obtain the effective moduli of the composite laminate. The location of shear center for any given cross-sections are determined according to the Trefftz' definition while the torsion constants are obtained using the St. Venant torsion theory. A series of benchmark examples for beams with various cross-sections are illustrated to show the accuracy of the developed cross-section analysis program. The cross section cases include thin-walled C-channel, I-beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a reasonable correlation is obtained in comparison with experiments or finite element analysis results.

편심하중이 작용하는 제형 다실박스거더에서의 거동분리연구 (A study of decomposition of applied eccentric load for multi-cell trapezoidal box girders)

  • 김승준;한금호;박남회;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.229-234
    • /
    • 2005
  • Thin-walled multicell box girders subjected to an eccentric load can he produced the three global behaviors of flexure, torsion, and distortion. Specially in railway bridges subjected to much eccentric load, it is quite important to evaluate influences of torsion and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces. we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is reserched by Park, Nam- Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about trapezoidal multi-cell section is insufficient. So, this paper deals with multi-cell trapezoidal box girders. An expanded method, which is based on the force decomposition method for a single cell box girder given by Nakai and Yoo, is developed herein to decompose eccentric load Pinto flexural, torsional, and distortional forces. Derive formulas by decomposition of eccentric load is verified by 3D shell-modelling numerical analysis.

  • PDF

Application of aerospace structural models to marine engineering

  • Pagani, A.;Carrera, E.;Jamshed, R.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.219-235
    • /
    • 2017
  • The large container ships and fast patrol boats are complex marine structures. Therefore, their global mechanical behaviour has long been modeled mostly by refined beam theories. Important issues of cross section warping and bending-torsion coupling have been addressed by introducing special functions in these theories with inherent assumptions and thus compromising their robustness. The 3D solid Finite Element (FE) models, on the other hand, are accurate enough but pose high computational cost. In this work, different marine vessel structures have been analysed using the well-known Carrera Unified Formulation (CUF). According to CUF, the governing equations (and consequently the finite element arrays) are written in terms of fundamental nuclei that do not depend on the problem characteristics and the approximation order. Thus, refined models can be developed in an automatic manner. In the present work, a particular class of 1D CUF models that was initially devised for the analysis of aircraft structures has been employed for the analysis of marine structures. This class, which was called Component-Wise (CW), allows one to model complex 3D features, such as inclined hull walls, floors and girders in the form of components. Realistic ship geometries were used to demonstrate the efficacy of the CUF approach. With the same level of accuracy achieved, 1D CUF beam elements require far less number of Degrees of Freedom (DoFs) compared to a 3D solid FE solution.

회전익기의 축계 경량화를 위한 최적설계 (Optimal Design for Weight Reduction of Rotorcraft Shaft System)

  • 김재승;문상곤;한정우;이근호;김민근
    • 한국전산구조공학회논문집
    • /
    • 제35권4호
    • /
    • pp.243-248
    • /
    • 2022
  • 본 논문에서는 1차원 오일러 보 요소(Euler-Bernoulli Beam Element)를 이용한 회전익기 축계에 대한 중량 최적설계를 수행하였다. 회전 축계의 특성을 고려해 비틀림(Torsion)과 베어링과 같은 축지지 강성 및 플랜지(Flange) 질량을 모두 고려하였고, 동적 안전성 확보를 위해 고유치 해석을 수행하여 임계속도(Critical Speed)와 기어박스로부터 오는 치 변형 가진을 회피할 수 있도록 하였다. 축의 길이는 고정된 상태에서 두께와 반경을 조절하여 중량 최적화를 수행하였으며, 최적화 과정은 2단계로 나누어 진행하였다. 1단계에서는 비틀림 강도를 제약조건으로 하여 중량을 최적화한 후 2단계에서는 축계 안정성 확보 기준(Headquarters, U.S. Army Material Command, 1974)에 따라 축의 비틀림 강도에 대한 제약조건을 만족시키며, 축의 1차 모드가 임계속도를 회피할 수 있도록 축 1차모드와 임계속도의 차이가 최대가 되도록 최적화를 진행하였다. 주어진 1차원 보 요소를 이용하여 최적설계를 한 결과를 3차원 유한요소 모델과 실제 제작된 축게의 시험결과와 비교하여 제안된 방법을 검증하였다.

Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method

  • Pagani, Alfonso;Petrolo, Marco;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • 제1권3호
    • /
    • pp.291-310
    • /
    • 2014
  • An advanced model for the linear flutter analysis is introduced in this paper. Higher-order beam structural models are developed by using the Carrera Unified Formulation, which allows for the straightforward implementation of arbitrarily rich displacement fields without the need of a-priori kinematic assumptions. The strong form of the principle of virtual displacements is used to obtain the equations of motion and the natural boundary conditions for beams in free vibration. An exact dynamic stiffness matrix is then developed by relating the amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out free vibration analyses. According to the doublet lattice method, the natural mode shapes are subsequently used as generalized motions for the generation of the unsteady aerodynamic generalized forces. Finally, the g-method is used to conduct flutter analyses of both isotropic and laminated composite lifting surfaces. The obtained results perfectly match those from 1D and 2D finite elements and those from experimental analyses. It can be stated that refined beam models are compulsory to deal with the flutter analysis of wing models whereas classical and lower-order models (up to the second-order) are not able to detect those flutter conditions that are characterized by bending-torsion couplings.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

CAS 복합재료 항공기 날개의 에일러론 역전 특성 연구 (A Study on the Aileron Reversal Characteristics of CAS Composite Aircraft Wings)

  • 송오섭;김근택
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1192-1200
    • /
    • 2009
  • 본 논문에서는 굽힘-비틀림 연성운동이 일어나는 CAS 형태의 이방성 복합재료 항공기 날개의 에일러론 역전 특성에 관한 해석적인 연구를 수행하였다. 복합재료 날개는 박판보로 모델링되었다. 복합재료 날개의 에일러론 역전 특성에 관한 연구에서, 횡전단변형 및 와핑구속, 굽힘-비틀림 연성, 후퇴각, 날개의 가로세로비, 날개와 에일러론의 길이비 및 시위비, 등을 고려하는 것이 필요하다. 얇은 벽 보의 항공기 날개에 대한 보다 더 효과적인 설계를 위해, 에일러론 역전 특성과 관련한 연구 결과는 매우 중요한 역할을 담당할 수 있을 것이다.