• Title/Summary/Keyword: Torsion Test

Search Result 235, Processing Time 0.024 seconds

Minimum Torsional Reinforcement Ratio of Reinforced Concrete Members for Safe Design (안전한 설계를 위한 철근콘크리트 부재의 최소비틀림철근비)

  • Kim, KangSu;Lee, DeuckHang;Park, Min-Kook;Lee, Jung-Yoon;Ju, HyunJin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.641-648
    • /
    • 2013
  • Current design codes regulate the minimum torsional reinforcement requirement for reinforced concrete members to prevent their brittle failure. The minimum torsional reinforcement ratio specified in the current national code and ACI318-11, however, have problems in the minimum longitudinal reinforcement ratio for torsion, the equilibrium condition in space truss model, and a marginal strength, etc. Thus, in order to overcome such shortcomings, this study presents a rational equation for minimum torsional reinforcement ratio that can provide a sufficient margin of safety in design. The minimum torsional reinforcement ratio proposed in this study was compared to the test results available in literature, and it was confirmed that it gave a proper margin of safety for all specimens studied in this paper.

A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile (후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구)

  • Lee, H.J.;Hwang, J.H.;Kim, S.S.;Byun, J.M.;Kim, E.Z.;Cha, D.J.;Kang, S.W.;Byun, W.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

Development of the Hybrid-Lower Arm Using the H-NCM(Hong NanoCast Mehtod) Rheocasting process (반응고 주조법을 활용한 하이브리드 로어암의 개발)

  • Sim, J.G.;Kim, H.S.;Lee, J.H.;Moon, J.Y.;Kim, J.M.;Jung, M.H.;Roh, S.K.;Kim, K.W.;Hong, C.P.
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.256-260
    • /
    • 2008
  • The Hybrid-Lower Arm, which has been developed for reducing cost and weight, was produced by three kinds of casting methods such as the high-pressure diecasting(HPDC), the squeeze casting(SC), and the H-NCM rheocasting process. The important factors for development of the Hybrid-Lower Arm are the integral feeding in Al casting for heat treatment and the high joinning ratio between the steel part and the Al part. In this study, effects of these casting processes on the quality of Hybrid-Lower Arm were investigated. Compared with HPDC and squeeze casting, the rheocasitng process using the H-NCM slurry had some advantages in joinning different materials of Al and steel pipe without deforming the steel pipe. X-ray analysis also showed the poreless microstructure in semisolid Hybrid-Lower Arm. In the torsion stress test, semisolid Hybrid-Lower Arm was satisfied with the requirements of automobile standard.

Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도)

  • 박창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 2002
  • The modified compression field theory is already applied in shear problem at some code(AASHTO-1998) partly. Nominal shear strength of concrete beam is sum of the concrete shcar strength and the steel shear strength in the current design code. But Torsional moment strength of concrete is neglected in the calculation of the nominal torsional moment strength of concrete beam In the current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But The tensile stresses of concrete after cracking are neglected in bending and torsion In design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded in the nominal torsional moment strength of reinforced concrete beam. This paper shows that the torsional moment strength of concrete is caused by the average principal tensile stress of concrete. To verify the validity of the proposed model, the nominal torsional moment strengths according to two ACI codes (89, 99) and proposed model are compared to experimental torsional moment strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

Development and Application of Skin Age Prediction Model Based on Skin Measurement Data According to Age of 20's to 40's ages of Korean Women (한국 여성의 연령에 따른 피부 측정 데이터 기반 20대 ~ 40대 피부 나이 예측 모형 개발 및 적용)

  • Maeng, Jihye;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • In this study, basic skin characteristics data were collected by measuring skin hydration, skin melanin, skin redness, and skin torsion elasticity from Korean women in from 20's to 40's ages, and then, age and correlation analysis were conducted. This was used to create a skin index, and cluster analysis was performed to classify the groups into 4 clusters, and the skin characteristics of each cluster were confirmed. Then, two prototypes were used for two weeks to confirm the improvement effect on skin moisture, skin redness, and skin dead mass reduction, and then analyzed which product was more effective in which cluster of subjects participated in the skin characteristics test. As a result of the study, the possibility of preparing for the customized cosmetics market was confirmed by applying the skin index and cluster analysis results to product efficacy evaluation.

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

Fracture resistance of ceramic brackets to arch wire torsional force (토오크 양에 따른 세라믹 브라켓의 파절 저항성)

  • Han, Jung-Heum;Chang, Minn-Hii;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2007
  • The purpose of this study was to estimate the fracture resistance of commercially available ceramic brackets to torsional force exerted from arch wires and to evaluate the characteristics of bracket fracture. Methods: Lingual root torque was applied to maxillary central incisor brackets with 0.022-inch slots by means of a $022\;{\times}\;028-inch$ stainless steel arch wire. A custom designed apparatus that attached to an Instron was used to test seven types of ceramic brackets (n = 15). The torque value and torque angle at fracture were measured. In order to evaluate the characteristics of failure, fracture sites and the failure patterns of brackets were examined with a Scanning Electron Microscope. Results: Crystal structure and manufacturing process of ceramic brackets had a significant effect on fracture resistance. Monocrystalline alumina (Inspire) brackets showed significantly greater resistance to torsional force than polycrystalline alumina brackets except InVu. There was no significant difference in fracture resistance during arch wire torsional force between ceramic brackets with metal slots and those without metal slots (p > 0.05). All Clarity brackets partially fractured only at the incisal slot base and the others broke at various locations. Conclusion: The fracture resistance of all the ceramic brackets during arch wire torsion appears to be adequate for clinical use.

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence (비원형 신선을 이용한 고강도-고연성 펄라이트 강선의 제조)

  • Baek, Hyun Moo;Hwang, Sun Kwang;Joo, Ho Seon;Im, Yong-Taek;Son, Il-Heon;Bae, Chul Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.743-749
    • /
    • 2014
  • In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.