• 제목/요약/키워드: Torque converter

검색결과 262건 처리시간 0.022초

열차 추진제어장치의 알고리즘에 관한 연구 (A Study of Control Algorithm for Propulsion System)

  • 최재호;김형철
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 2007
  • In this paper, control schemes are developed for a propulsion system(Converter/Inverter) in electrical train. A robust controller for PWM converter is proposed. The converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. This proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. Inverter system is controlled by vector control and slip frequency control. At low speed region, vector control scheme is applied to control instantaneous torque and slip frequency control is performed under overmodulation region and one pulse mode. Because output voltage of converter contains harmonics ripple at twice input ac line frequency, control scheme is developed to reduce the pulsating torque current. The performance of propulsion system will be verified by simulation and prototype experimental results.

학습 알고리듬을 이용한 자동변속기의 변속제어기 설계 (Design of shift controller using learning algorithm in automatic transmission)

  • 전윤식;장효환
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.663-670
    • /
    • 1998
  • Most of feedback shift controllers developed in the past have fixed control parameters tuned by experts using a trial and error method. Therefore, those controllers cannot satisfy the best control performance under various driving conditions. To improve the shift quality under various driving conditions, a new self-organizing controller(SOC) that has an optimal control performance through self-learning of driving conditions and driver's pattern is designed in this study. The proposed SOC algorithm for the shift controller uses simple descent method and has less calculation time than complex fuzzy relation, thus makes real-time control passible. PCSV (Pressure Control Solenoid Valve) control current is used as a control input, and turbine speed of the torque converter is used indirectly to monitor the transient torque as a feedback signal, which is more convenient to use and economic than the torque signal measured directoly by a torque sensor. The results of computer simulations show that an apparent reduction of shift-transient torque is obtained through the process of each run without initial fuzzy rules and a good control performance in the shift-transient torque is also obtained.

스위치드 리럭턴스전동기의 특성 해석 (Characteristic analysis of SRM drives)

  • 정환;장도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2120-2122
    • /
    • 1997
  • SRM converter is divided into active power converter and passive power converter. Current and torque characteristics for representative active and passive converter are analyzed. Through simulation and experiments, several characteristics are confirmed and compared with each other.

  • PDF

충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어 (Zero Torque Control of Switched Reluctance Motor for Integral Charging)

  • 라쉬디;나마찌;세헤이안;이동희;안진우
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

풍력터빈시뮬레이터와 매트릭스 컨버터를 적용한 PMSG 풍력발전 시스템 모델 개발 (Development of PMSG Wind Power System Model using Wind Turbine Simulator and Matrix Converter)

  • 윤동진;한병문;차한주;이옥용;최남섭
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1130-1137
    • /
    • 2009
  • This paper describes a scaled model development of PMSG wind power system using wind turbine simulator and matrix converter. The wind turbine simulator, which consists of an induction motor with vector drive, calculates the output torque of a specific wind turbine using simulation software and sends the torque signal to the vector drive after scaling down the calculated value. The operational feasibility of interconnected PMSG system with matrix converter was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The simulation and experimental results confirm that matrix converter can be effectively applied for the PMSG wind power system.

매트릭스 컨버터를 사용한 네트워크 기반 천정형 크레인 제어 시스템 (Network-Based Overhead Crane Control System Using Matrix Converters)

  • 이홍희;전태원
    • 전력전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2010
  • 본 논문은 CAN을 사용하여 매트릭스 컨버터로 구동되는 천정형 크레인의 총괄제어 기법을 제시하였다. 크레인의 갠추리, 트롤리 및 호이스트 구동용으로 4개 매트릭스 컨버터-유도전동기 구동장치를 직접토크 기법으로 위치 제어한다. 위치제어 알고리즘과 CAN을 사용한 크레인의 총괄제어 기법을 제시하고, 시뮬레이션 및 실험을 통하여 매트릭스 컨버터-유도전동기로 구동되는 크레인의 위치제어 성능을 확인한다.

풍력터빈시뮬레이터와 매트릭스 컨버터를 이용한 PMSG 풍력발전 시스템 모델 개발 (Development of PMSG wind power system model using wind turbine simulator and matrix converter)

  • 윤동진;한병문;리위룽;차한주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.45-47
    • /
    • 2008
  • This paper describes development of PMSG wind power system model using wind turbine simulator and matrix converter. The wind turbine simulator, which consists of an induction motor with vector drive, calculates the output torque of a specific wind turbine using simulation software and sends the torque signal to the vector drive after scaling down the calculated value. The operational feasibility of interconnected PMSG system with matrix converter was verified by computer simulations with PSCAD/EMTDC software. The simulation results confirm that matrix converter can be effectively applied for the PMSG system.

  • PDF

5속 A/T용 자동변속기 토크컨버터 댐퍼클러치 슬립제어가 슬림율과 연비에 미치는 영향 (Effect of Slip-Controlled Torque Converter Damper Clutch in 5-Speed Automatic Transmission on Slip Rate and Fuel Economy)

  • 이기수;김덕중;김현철;나병철;허형석;이호길;장재덕
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.74-80
    • /
    • 2009
  • The objective of this paper was to investigate the slip rate and the slip frequency number of damper clutch of torque converter in 2.4L passenger vehicle with 5-speed A/T and analyze the effect of slip control and control strategy on driving characteristics and the fuel economy. The newly developed torque converter with the more durable wet friction material and the slip-controlled damper clutch system, the DCC system, was installed, which was easily compatible and amendable of the lock-up clutch of the base system. The vehicle has been tested on the fuel economy modes such as FTP-75, HWFET and NEDC (ECE15+EUDC) driving cycle at chassis dynamometer. The DCC mode (II), of which the control strategy had both the lock-up and the slip-controlled clutch, and the DCC mode (I) with full slip-controlled clutch were compared with the base system with only the lock-up clutch. As the research result, comparison to base system, the fuel consumption of the vehicle with the DCC control (II) was effectively improved by 6.6% and 7.7% on FTP-75 and NEDC mode.

정지구간에서 자동변속기 D단 중립 제어가 LA-4 모드 주행 연비에 미치는 영향 (Effect of D-Range Neutral Control of Automatic Transmission on LA-4 Mode Fuel Economy)

  • 위효성;정연식;박진일;박경석;이종화
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.19-23
    • /
    • 2009
  • This paper focuses on vehicle fuel economy improvement using D-Range neutral control of automatic transmission. The system objected to reducing of fuel consumption during idle. Usually, turbine of conventional auto transmission is mechanically linked to wheel during idling condition. Therefore speed ratio of torque converter is zero for that period. This causes needless power loss by the torque converter slip. To improve this inefficiency automobile makers develops electronically-controlled D-range neutral control system. The D-range neutral control system minimizes slip on the torque converter by shifting gear to a neutral position during vehicle stoped with D-range gear position. However there's insufficient study about the effect of D-range neutral control system on vehicle fuel economy. In this paper, researches are performed on effect of D-range neutral control system on vehicle fuel economy by experiment with two different vehicle. And it is also estimated the effect on vehicle fuel economy using computer simulation. As a result, 1.8% of LA-4 mode fuel economy improvement can be achieved in a vehicle by D-range neutral control system.