• Title/Summary/Keyword: Torque controller

Search Result 988, Processing Time 0.034 seconds

Parameter Identification of an Induction Motor Drive with Magnetic Saturation for Electric Vehicle

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.418-423
    • /
    • 2011
  • This paper presents a simulation model and a parameter identification scheme of an induction motor drive for electric vehicle. The induction motor in automotive applications should operate in very high efficiency and achieve the maximum-torque-per-ampere (MTPA) feature even with saturated magnetic flux under very high torque. The indirect vector control which is typically adopted in traction drive system requires precise information of motor parameters, particularly rotor time constants. This work models an induction motor considering magnetic saturation and proposes an empirical identification method using the current controller in the synchronous reference frame. The proposed method is applied to a 22kW-rated induction motor for electric vehicle.

Torque Analysis of Rotary Actuator Using Equvalent Magnetic Circuit method in combination with finite element method (등가자기회로법과 유한요소법을 이용한 액츄에이터의 토크특성 해석)

  • Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Je-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.605-607
    • /
    • 2000
  • Although Equvalent Magnetic Circuit (EMC) method. Using lumped parameter and numerical analysis method are widely used for electric machine analysis. these are neither always accurate enough nor sometimes available to easily use. Moreover three dimensional finite element method (3D-FEM) is inherently unsuitable for electric machine performance evaluation due to its poor computational efficiency, such as too long calculation time and difficulty in modeling for analysis. In this paper, Nonlinear Equivalent Magnetic Circuit (NEMC) method in combination with 2D-FEM is proposed to analyze the electric machine requiring 3D-FEM, and this method applys to torque evaluation for rotary actuator of Electro Magnetic Electronic Controller Power Steering (EM-ECPS).

  • PDF

An Induction Motor Motion Control System with Direct Torque Control (직접 토크제어에 의한 유도전동기의 위치제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1036-1038
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of induction motor vector drives with a direct torque control(DTC) using the 16bit DSP TMS 320F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controllers for induction motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux observer of current model that inputs are current sensing of motor terminal and rotor angle, and optimal switching look-up table by using fully integrated control software. The developed system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

A Study Stratum Axial Type BLDC Motor Speed Control using TDOF Controller (2자유도 제어기를 이용한 적층형 BLDC 모터의 속도제어 연구)

  • Lee, Jong-Hyun;Baek, Seung-Kil;Lee, Cheol-Hwan;Kang, Seung-Uk;Kim, Yeong-Ju;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1162-1164
    • /
    • 2000
  • Stratum Axial Type BLDC Motor has remarkable efficiency owing to outstanding characteristics of speed and torque as well as its small size. In this paper 2-Degree of Freedom PI (TDOF PI) control method is presented in order to improve the efficiency of Stratum Axial Type BLDC Motor and the simulation proves that the separate control for speed characteristic from answering characteristic of load torque particularly allows the construction of superior control system to PI control system. These results are significant in that the improved Stratum Axial Type BLDC Motor enables the production of much smaller, lighter, and noiseless electric home appliances such as air-conditioner and refrigerator.

  • PDF

Design and Evaluation of Cardiovascular Impedance Simulator Considering Mechanical Limits (기계적 한계를 고려한 심혈관 순환계 임피던스 시뮬레이터 설계 및 평가)

  • Gwak, Kwan-Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.151-159
    • /
    • 2008
  • The parameter-based cardiovascular impedance simulator that is able to overcome the limits of conventional mock circulatory systems is critical for the development and test of biomedical devices including artificial heart. The concept of impedance simulator was validated mathematically in a previous study using high-gain feedback linearization control which, however, may cause serious difficulties and limits for practical implementation. In this study, therefore, practical applicability of the impedance simulator is investigated considering the physical limits such as motor speed and torque. Simple PID controller which do not require complex model of the simulator is used considering the practical implementation. Design guidelines of the impedance simulator are also provided based on the results.

Analysis of Interior-Type Permanent Magnet Synchronous Motor Using Finite Element Method (유한 요소법에 의한 매입형 영구 자석 동기 전동기의 특성 해석)

  • Kim, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.723-734
    • /
    • 1992
  • In this paper, the characteristics of IPMSM(Interior-type Permanent Magnet Synchronous Motor) are simulated using 2-D. finite element method. This paper deals with the following characteristics : air gap flux density considering skew, back e.m.f., torque and inductance. Back e.m.f. is calculated using the flux obtained from the vector potential of FEM solution. Torque is calculated using improved Maxwell stress tensor method and current angle which is obtained from the controller. Direct axis inductance and quadrature axis inductance are also calculated using energy perturbation method. Computed results are found in satisfactory agreement with experimental ones. This method also can be applied for the computation and analysis of the characteristics of SPMSM, current-excited synchronous motor and reluctance motor.

Modeling and Path-Tracking of Wheeled-Mobile Robots having the Limited Drive-Torques (구동토크의 제약을 갖는 구륜이동로봇의 모델링과 경로추적)

  • 김종수;문종우
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.482-491
    • /
    • 2003
  • In this paper are presented kinematic and dynamic modeling and path-tracking of four-wheeled mobile robots with 2 d.o.f haying the limited drive-torques. Controllability of wheeled-mobile robots is revealed by the kinematic model. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to drive the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Implementation and Comparison of Various Control Algorithms for Industrial Manipulators (산업용 머니퓰레이터를 위한 여러 제어 알고리즘의 구현과 비교)

  • Yoo, D.S.;Shin, Y.S.;Chung, M.J.;Bien, Z.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.234-237
    • /
    • 1987
  • Recently various control algorithms for industrial manipulators have been proposed. However, computation time, modelling error, and torque type controller design have prevented real-time implementation. As the result, most of performance evaluations of control algorithms have been carried out only by computer simulations. In this paper, we explore real-time implementation to show the feasibility and effectiveness of such algorithms. Experimental results indicate that computed torque method and learning control algorithms can be effectively applied to control industrial manipulators.

  • PDF

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • 박현철;이수원;김영민;황종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

Characteristics of Ultrasonic Motor using Voltage Control and Phase Difference Control (초음파 모터의 전압 및 위상차 제어 특성)

  • Shin, Duk;Kim, Dong-Ok;Ko, Nak-Yong;Choi, Han-Soo;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.949-952
    • /
    • 1996
  • The ultrasonic motor(USM) has good characteristics such as compact size, silent motion, low speed, high torque and high speed response. The USM is driven by 2-phase AC electricity. The control parameters of USM are voltage, phase difference, frequency of input power, etc. In this paper, we propose voltage difference control. And we designed USM controller to adjust voltage and phase using pLSI(programmable Large Scale Integration). Voltage difference control has many advantages that are lower current, lower power than phase difference control. Especially there is nearly zero ampere at the zero point of speed and torque. we can apply this voltage difference control to the compliance control of DD manipulator.

  • PDF