• Title/Summary/Keyword: Torque controller

Search Result 988, Processing Time 0.029 seconds

Control System Development of 750kW Direct Drive Wind Turbine Generator (750kw급 직접 구동형 풍력 발전기의 제어 시스템 개발)

  • Kim, Dae-Hyun;Hwang, Jin-Su;Lee, Seung-Hun;Jang, Sung-Tae;Ryu, Ji-Yoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.55-58
    • /
    • 2005
  • 풍력발전기에 있어서 보호 및 제어 시스템은 그 효율, 성능, 안전 및 수명까지도 영향을 미칠 수 있는 중요한 구성요소이다 따라서 제어 시스템은 풍력발전기의 최대 효율 및 가동률을 확보하여야 하며 풍력발전기에 문제가 발생할 경우 즉시 가동을 정지할 수 있도록 안전성을 확보할 수 있도록 설계되어야 한다. 본 연구에서는 "750kw급 Gearless형 풍력발전시스템 개발" 과제의 일환으로 수행되었던 풍력발전기용 제어시스템의 설계 및 제작 과정과 상용제품으로서의 본 제어 시스템을 소개하고자 한다.

  • PDF

Design of Speed Controller of Rolling Mill DC Motor Drive System Using Self-Tuning Regulator (자기 동조 제어기를 이용한 압연용 직류 전동기 구동 시스템의 속도 제어기 설계)

  • Ji, Jun-Keun;Song, Seung-Ho;Sul, Seung-Ki;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1231-1234
    • /
    • 1992
  • In this paper a self-tuning control algorithm has been utilized to control speed of a rolling mill DC drive system. Inner current control loop is composed of predictive current controller and the outer speed control loop is composed of the self-tuning PI or IP controller. Computer simulation results reveal that the adaptive control algorithm using self-tuning control is capable of following the typical set point variations required for a rolling mill in conjunction with load torque variations on the shaft of the drive.

  • PDF

A Study on CNC Performance Test System using the Dynamometer (Dynamometer를 이용한 CNC제어기 성능평가 시스템 개발)

  • Kim Sung Chung;Lee Chan Ho;Park Byung Gyu;Jeong Eul Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2005
  • It is difficult to separate those of NC controller from the error of machine tools because the conventional testing methods to inspect the performance are including the errors of moving system, therefore it has been used as the methods that compare the other controllers. Also, it is hard to predict the machine itself errors with the methods assembling the NC controller and moving system on machine because of the variable load conditions. In this study, the performance inspecting system was developed by analyse the $axis\_rotating$ properties of servo system finally outputting from NC controller. The axis torque was controlled by motor dynamometer and the rotating position accuracy was measured by this developed system.

On a Characteristics of Mast Arm Using DC Motor (DC 모터를 이용한 마스트 암의 특성에 관하여)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.295-299
    • /
    • 2007
  • Biped robot requires that an energy source and a control part should be installed on the body to realize active system. So, we choose the DC motor having high torque in compact size in this study. In the DC motor serve system, we choose power amplifier with analog configuration, developed the module combined the controller and the driver. We applied this module to robot actuator and studied the response characteristics in an action and a return. Main controller with serve system, loading PIC micro controller, can be load on the robot with light weight.

  • PDF

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

A STUDY OF ROBUST CONTROLLER FOR ROBOT MANIPULATOR (로보트 매니플레이터의 제어를 위한 강인한 적응 제어기의 설계)

  • Park, Kyoung-Hee;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.450-455
    • /
    • 1989
  • In this paper we investigate the application to the motion control of n-link robotic manipulators of recently developed stable factorization approach to tracking and disturbance rejection. Given control scheme consists of an approximate "Computed Torque" based upon a simplified model together with additional state feedback and feedforward compensation, and then, nonlinear control gain has more useful than constant control gain to guarantee robustness to parameter uncertainty and external disturbance. At this stage, we design high gain nonlinear state feedback controller and simulate this controller at the SCARA type robot manipulator of two joint.

  • PDF

A Study of the design of controller for microprocessor - Based Permanent magnet AC Servo motor (마이크로프로세서에 의한 SM 형 AC SERVO MOTOR 제어기의 설계에 관한 연구)

  • Kim, Ki-Young;Oh, Ki-Bong;Kim, Jung-Ha;Yoon, Byung-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.258-263
    • /
    • 1989
  • The configuration of Brushless DC moter is similar to the permanent magnet Synchronous moter. Power transistors are oftenly used to supply the switching by feedback signals of rotor positioning sensors. Brushless DC moter have been used in Aerospace and Robotics where the electromagnetic noise or the sparking of the commutator contact can not be tolerated and long - lived maintenance - free operation is required. This paper describes the design of the microprocessor - based controller for the Brushless DC moter. The controller is designed to operate for the constant torque generation and variable speed control using sinusoidal PWM inverters and resolvers as rotor positioning sensors.

  • PDF

Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer (비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어)

  • 오소력;최재원;김종식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

Analysis of High Speed Linear Motor Feed System Characteristics (리니어모터 응용 고속 이송시스템 특성분석에 관한 연구)

  • 유송민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.993-996
    • /
    • 2000
  • A brushless linear motor is suitable for a high-accuracy servo mechanism. It is also suitable for operation with higher speed and precision. Since it does not involve some sort of mechanical coupling, linear driving force can be applied directly. Basic models including magetomotive force and electromotive forces are introduced and simplified. Both conventional PID and fuzzy controllers are implemented and performance results using those controllers are compared. Along with better simulated performance observed using fuzzy controller, further fabrication is to be included with various empirical results. Several system operational characteristics have been observed. Typical nonlinearities as friction, cogging and torque or thrust ripple that might deteriorate system performance would be tackled using presumably effective method such as neural network based learning controller.

  • PDF

Neural network control by learning the inverse dynamics of uncertain robotic systems (불확실성이 있는 로봇 시스템의 역모델 학습에 의한 신경회로망 제어)

  • Kim, Sung-Woo;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.88-93
    • /
    • 1995
  • This paper presents a study using neural networks in the design of the tracking controller of robotic systems. Our strategy is to put to use the available knowledge about the robot manipulator, such as estimation models, in the contoller design via the computed torque method, and then to add the neural network to control the remaining uncertainty. The neural network used here learns to provide the inverse dynamics of the plant uncertainty, and acts as an inverse controller. In the simulation study, we verify that the proposed neural network controller is robust not only to structured uncertainties, but also to unstructured uncertainties such as friction models.

  • PDF