• 제목/요약/키워드: Torque controller

검색결과 988건 처리시간 0.039초

Switching Angle Control of a High Speed Switched Reluctance Motor using an FPGA Circuit

  • Park, Changhwan;Kim, Vongdae;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.152.1-152
    • /
    • 2001
  • This paper presents a high performance and cost effective way by using an FPGA circuit to implement torque controller so that the SRM can operate at high speed. In order to increase the operating speed, we need to implement both the torque and the current controllers by using an FPGA. However, it is difficult to implement all of the torque controller in the FPGA. Moreover, implementation of a time critical part is sufficient for improving the performance. One of the time critical part is the switching angle control. In this study, torque controller which calculate the switching on and commutation angles is implemented in PC because these angle are a function of rotor velocity which is varied slowly, and switching angle controller ...

  • PDF

Multi-PI 제어기를 이용한 SynRM의 최대토크 제어 (Maximum Torque Control of SynRM Using Multi-PI Controller)

  • 정병진;고재섭;최정식;정철호;김도연;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.956-957
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using Multi-PI controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ids for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled Multi-PI controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the Multi-PI controller.

  • PDF

승용차용 토크컨버터 바이패스 클러치의 비선형 견실제어 (Nonlinear Robust Control of Passenger Car Torque Converter Bypass Clutch)

  • 한진오;강수준;이교일
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1251-1258
    • /
    • 2003
  • This paper presents a nonlinear robust approach to the slip control problem for a torque converter bypass clutch in a passenger car. The proposed nonlinear robust controller builds upon only the measurements avail-able from inexpensive sensors that are already installed in passenger cars for control. The issue of torque estimation problems for the implementation of the proposed controller is addressed. The stability of the internal dynamics is investigated, upon which a nonlinear robust controller is designed using input-output feedback linearization and Lyapunov redesign technique. The performance of the designed controller is validated by simulation studies.

Cadence Sensing 방식의 전기자전거를 위한 정밀 토크제어 컨트롤러 설계 (Design of Precise Torque Controller for Electric Bicycle with Cadence Sensing Drive System)

  • 이주연;김대순;이종하;송제호
    • 전자공학회논문지
    • /
    • 제54권6호
    • /
    • pp.134-139
    • /
    • 2017
  • 본 논문에서는 전기자전거의 정밀 토크제어를 위하여 새로운 토크제어 방식을 제안하고 구현한다. 트로틀 노이즈를 제거하기 위한 이동 평균 필터를 채택함으로써 256 단계의 세분화된 트로틀 단계로 전기자전거의 제어가 가능하다. 설계된 컨트롤러는 전기자전거에 장착 실험되어 기존의 Cadence 감지 컨트롤러 대비 개선된 선형 제어특성을 확인하였다.

ALM-FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어 (Maximum Torque Control of SynRM Drive with ALM-FNN Controller)

  • 고재섭;남수명;최정식;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2005
  • The paper is proposed maximum torque control of SynRM drive using learming mechanism-fuzzy neural network(LM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^i{_d}$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN and ANN controller.

  • PDF

자동변속장치의 간접식 과도토오크 제어기 설계에 관한 연구 (A Study on the Design of an Indirect Shift Transient Torque Controller for an Automatic Power Transmission System)

  • 정헌술;이교일
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.110-120
    • /
    • 1994
  • Due to the increasing demands in comfortable drivability, most motor companies are developing their own unique shift controller to suppress the shift shock induced by gear change. For a typical automatic transmission system, the dynamic constraints of friction clutch was clarified for efficient program development and major factors effecting the shift transient was confirmed by simulation study. The MIMO LQG/LTR controller was designed to control the turbine and corresponding gear speed. By establishing the control strategy recalling transient response during shift the speed controller mentioned above was used as an indirect torque controller. Consequently a new concept for a systematic design method of shift controller applicable to wide-varying systems was suggested which is time efficient and cost efficient saving a lot of experimental study.

  • PDF

학습 알고리듬을 이용한 자동변속기의 변속제어기 설계 (Design of shift controller using learning algorithm in automatic transmission)

  • 전윤식;장효환
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.663-670
    • /
    • 1998
  • Most of feedback shift controllers developed in the past have fixed control parameters tuned by experts using a trial and error method. Therefore, those controllers cannot satisfy the best control performance under various driving conditions. To improve the shift quality under various driving conditions, a new self-organizing controller(SOC) that has an optimal control performance through self-learning of driving conditions and driver's pattern is designed in this study. The proposed SOC algorithm for the shift controller uses simple descent method and has less calculation time than complex fuzzy relation, thus makes real-time control passible. PCSV (Pressure Control Solenoid Valve) control current is used as a control input, and turbine speed of the torque converter is used indirectly to monitor the transient torque as a feedback signal, which is more convenient to use and economic than the torque signal measured directoly by a torque sensor. The results of computer simulations show that an apparent reduction of shift-transient torque is obtained through the process of each run without initial fuzzy rules and a good control performance in the shift-transient torque is also obtained.

열간압연 권취형상 제어를 위한 LSDC 설계에 관한 연구 (Study on LSDC Design for Coiling Shape Control of Hot Strip Mills)

  • 이상호;박홍배;박철재
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.869-874
    • /
    • 2015
  • We developed an LSDC (Load Shift and Load Distribution Control) technology in order to improve coil quality and productivity by reducing tension fluctuation especially for the tail of the strip in the down coiler in hot strip mills. To adapt the new controller, the torque and speed distribution between the zero pinch roll, pinch roll, and mandrel are needed. The proposed controller is a combination of an LSC to share the tension between the mill stand and the mandrel, and an LDC to shift the torque load from the zero pinch roll to the pinch roll. From the simulation, the proposed controller is verified under the torque disturbance. Using a field test, the torque deviation decreased by nearly 50% through utilization of the LSDC control.

Sliding Mode Controller for Torque and Pitch Control of PMSG Wind Power Systems

  • Lee, Sung-Hun;Joo, Young-Jun;Back, Ju-Hoon;Seo, Jin-Heon;Choy, Ick
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.342-349
    • /
    • 2011
  • We propose a torque and pitch control scheme for variable speed wind turbines with permanent magnet synchronous generator (PMSG). A torque controller is designed to maximize the power below the rated wind speed and a pitch controller is designed to regulate the output power above the rated wind speed. The controllers exploit the sliding mode control scheme considering the variation of wind speed. Since the aerodynamic torque and rotor acceleration are difficult to measure in practice, a finite time convergent observer is designed which estimates them. In order to verify the proposed control strategy, we present stability analysis as well as simulation results.