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Abstract

We propose a torque and pitch control scheme for variable speed wind turbines with permanent magnet synchronous generator
(PMSG). A torque controller is designed to maximize the power below the rated wind speed and a pitch controller is designed
to regulate the output power above the rated wind speed. The controllers exploit the sliding mode control scheme considering
the variation of wind speed. Since the aerodynamic torque and rotor acceleration are difficult to measure in practice, a finite
time convergent observer is designed which estimates them. In order to verify the proposed control strategy, we present stability
analysis as well as simulation results.
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I. INTRODUCTION

Recently, environmental concerns are on the rise. In ad-
dition, because of the lack of fossil fuels, the interest in
renewable energy sources rapidly grows. Especially wind is
considered as one of the most efficient sources for generating
electricity [1]. Wind power system transforms wind energy
into electric energy through wind turbines and they are typi-
cally operated in two methods. One with fixed speed and the
other with variable speed [2]. Despite its simple structure, fixed
speed wind turbines have some problems with low efficiency,
poor power quality, and limitation of utility. Therefore, they
have been replaced by variable speed wind turbines in order
to reduce mechanical fatigue and enhance efficiency. A per-
manent magnet synchronous generator (PMSG) is used for
variable speed wind turbines because of its advantages such
as simple structure and high efficiency.

For variable speed wind turbines which can limit the inlet
wind power by adjusting the blade pitch angle there are mainly
two controllers. One is the power controller regulating the
output power and the other controlling the pitch angle of
turbine blades (pitch controller). For wind turbine systems
using PMSG, there exists a variety of control schemes such
as PI control [3], [4], sliding mode control schemes, etc.
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Although the PI control scheme is widely used, it shows a
limited performance, especially against uncertainties. Thus,
various controllers including sliding mode control scheme are
developed to provide better robustness. For power control, [5],
[6] propose the sliding mode control scheme below the rated
wind speed in order to maximize the generated power and [7],
[8] introduce high order sliding mode controllers to reduce
the chattering effect. For pitch control, most of the results use
PI control scheme and recently a sliding mode pitch control
scheme is presented in [9]. However, in [9] it is assumed that
the aerodynamic torque and the wind speed are measurable,
which is not realistic in practice.

This paper aims to provide controllers for the generator
torque and the pitch angle of the wind power system based on
PMSG. Both controllers are designed based on sliding mode
control scheme without the assumption that the wind speed
is measurable. Since the aerodynamic torque and the rotor
acceleration are difficult to measure, an observer is introduced
to estimate them. The observer is designed by using high order
sliding mode scheme based on the supertwisting algorithm and
provides estimate values of the aerodynamic torque (for torque
controller) and the rotor acceleration (for pitch controller). To
develop the sliding mode pitch control, the wind power system
is linearized with respect to the pitch angle relying on the
direct feedback linearizing (DFL) theory [10]. This approach
provides robustness with respect to external disturbances and
uncertain dynamics.

This paper is organized as follows. In Section II, the wind
turbine generator model is presented. Section III introduces an
observer and the proposed controller which achieve the objec-
tives of the torque control and pitch control. In Section IV,
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Fig. 1. Wind turbine power coefficient.
(β? is the pitch angle maximizing the power coefficient)

the proposed controllers are verified by simulations. Finally,
Section V concludes the paper.

II. WIND TURBINE GENERATOR MODEL

A. Wind Turbine Rotor Model

The aerodynamic power Pw produced by wind turbine rotor
is given by

Pw =
ρπr2v3Cp(λ, β)

2
(1)

where ρ is the air density, r is the radius of rotor, v is the
wind speed, Cp is the power coefficient, λ is the tip speed
ratio, and β is the pitch angle. The tip speed ratio λ is defined
as

λ =
rωm
v

where ωm is the angular rotor speed.
The power coefficient model Cp(λ, β) used in our paper is

taken from [11] and given by

Cp(λ, β) = c1

(
c2

1

Γ
− c3β − c4βx − c5

)
e−

c6
Γ

1

Γ
=

1

λ+ 0.08β
− 0.035

1 + β3

(2)

where the coefficients c1, . . . , c6 and x depend on wind
turbines. In Fig. 1, Cp is plotted with respect to the tip speed
ratio λ for various values of the pitch angle β. The values for
c1, . . . , c6 and x used in the paper are given in Appendix.
Using (1), the aerodynamic torque Tw is given by

Tw =
Pw
ωm

=
ρπr3v2Cp(λ, β)

2λ
.

B. Drive Train and PMSG Model

We consider a one-mass drive train model given by

ω̇e =
P

J

(
Tw
N

+ Te

)
(3)

where ωe = Pωg = PNωm is the electrical rotor speed, ωg
is the mechanical rotor speed, P is the number of pole pairs,
J is the inertia of turbine, N is the gear ratio, and Te is the
generator electromagnetic torque. Note that in our setting, Te
is negative for generating.

The voltage and torque equations of PMSG in the syn-
chronous reference frame [4] are given by

ud = Rsid +
d

dt
Ldid − ωeLqiq

uq = Rsiq +
d

dt
Lqiq + ωe(Ldid + φ)

Te =
3

2
P ((Ld − Lq)idiq + φiq)

where ud, uq are the dq axis voltages, id, iq are dq axis
currents, Rs is the stator resistance, Ld, Lq are the dq axis
inductances, and φ is the permanent magnetic flux. If the
PMSG has a uniform air gap, then Ld = Lq = L and voltage
equations can be expressed with respect to currents.

i̇d = −Rs
L
id + ωeiq +

1

L
ud (4)

i̇q = −Rs
L
iq − ωeid −

ωeφ

L
+

1

L
uq (5)

Te =
3

2
Pφiq.

III. CONTROLLER DESIGN

In this section, we propose a torque controller and a pitch
controller using the sliding mode control scheme. At first, an
observer is developed to estimate the aerodynamic torque and
rotor acceleration. Secondly, a torque controller is designed
for two objectives. One objective is to reduce the copper loss
by setting the d axis current to be zero and the other is to
maximize the generating power by tracking the maximum
power operating point. Two sliding surfaces are designed for
these objectives. In the case of the pitch controller, a sliding
surface is designed to maintain the rated rotor speed so that
the generated power is regulated.

From the equations (3), (4) and (5), the wind power system
is represented by

i̇d = −Rs
L
id + ωeiq +

1

L
ud

i̇q = −Rs
L
iq − ωeid −

ωeφ

L
+

1

L
uq

ω̇e =
P

J

(
Tw
N

+ Te

)
(6)

where the dq axis voltages are control inputs and id, iq , and
ωe are state variables.

We assume that the system (6) satisfies the following
conditions.

Assumption 1: The wind speed and pitch angle is in the
range of 0 < v ≤ v ≤ v, β? ≤ β ≤ 90°, respectively.
Moreover, there exist positive constants W0, W1, B, and V1

such that |ωe| < W0, |dωe

dt | < W1, |dβdt | < B, and |dvdt | < V1.
3

Assumption 1 is technical and the bounds are used to
derive the control laws. The wind power system is operated
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in the specific range of wind speed. In practice, if the wind
speed is out of some range v ≤ v ≤ v, then the system will
be shut down, or does not generate any power. In addition,
in order to generate maximum power and to keep the rated
power, the pitch angle (in degree) should be between β? and
90°. The pitch angle β = 90° means that the wind power
system is shut down so that no power is generated. It is
assumed that the time derivatives of the rotor speed, pitch
angle, and wind speed are bounded. It is also assumed that
the rotor speed is bounded.

A. Observer Design

The estimated aerodynamic torque and rotor acceleration
are used in the torque controller and the pitch controller. In
order to estimate them, we use the sliding mode observer [8]
based on the supertwisting algorithm [12].

˙̂we =
P

J
Te + u1 − µ|e|

1
2 sgn(e), e := ω̂e − ωe

u̇1 =

{
−u, |u| > UM
−αsgn(e), |u| ≤ UM

u = u1 − µ|e|
1
2 sgn(e), T̂w =

JN

P
u1.

(7)

From (3) and (7), the dynamics of e is derived as

ė = − P

JN
Tw + u1 − µ|e|

1
2 sgn(e).

According to supertwisting algorithm, e and ė converge to
zero in finite time, and thus Tw, ωe can be estimated. UM ,
α, and µ are the positive constants satisfying the following
equations.

qUM >

∣∣∣∣
P

JN
Tw

∣∣∣∣ , 0 < q < 1, α > C

C ≥
∣∣∣∣
P

JN
Ṫw

∣∣∣∣ , µ >

√
2

(α− C)

(α+ C)(1 + q)

(1− q) .

In order to apply the supertwisting algorithm, Tw and Ṫw
should be bounded, which is assured by Lemma 1.

Lemma 1: Suppose that there exists a sufficiently small
positive constant w?e such that ωe ≥ ω?e . Then there exist
constants T0 and T1 so that |Tw| < T0 and |Ṫw| < T1. 3

Proof: The constant T0 can be found as follows. Repre-
sent Tw as

Tw =
1

2

ρπr2v3NPCp(λ, β)

ωe
.

Since Cp is bounded by C∗p (see item 1) in Appendix), we
have

|Tw| ≤
1

2

ρπr2v3NPC∗p
ω?e

=: T0.

To find T1, we first note that Tw is a function of ωe, β and
v. Note also that λ is a function of ωe and v. Then,

Ṫw =
∂Tw
∂ωe

ω̇e +
∂Tw
∂β

β̇ +
∂Tw
∂v

v̇

=

(
−ACp

1

ω2
e

+
A

ωe

∂Cp
∂ωe

)
ω̇e

+
A

ωe

∂Cp
∂β

β̇ +
3ACp
ωev

v̇ +
A

ωe

∂Cp
∂v

v̇

where A = ρπr2v3NP
2 . According to Assumption 1, it holds

that |dωe

dt | < W1, |dβdt | < B, and |dvdt | < V1. Partial derivatives
of Cp are computed in Appendix. We can also find constants
K1, K2, and K3 such that |∂Cp

∂ωe
| < K1, |∂Cp

∂β | < K2, and
|∂Cp

∂v | < K3. Thus, |Ṫw| is bounded by T1 which is given by

T1 =
Amax

ω?e

[(
C∗p
ω?e

+K1

)
W1 +K2B +

(
3C∗p
v

+K3

)
V1

]
.

where Amax = ρπr2v3NP
2 .

B. Torque Controller Design

The torque controller should be designed to maximize the
generating power below the rated wind speed. To achieve this,
Cp should maintain the maximum value Cp(λopt, β?) in Fig.
1. Thus the pitch angle β is set to be β?. At the maximum
value of Cp, the aerodynamic torque is expressed as

Twopt =
ρπr5Cp(λopt, β

?)

2N2P 2λ3
opt

ω2
eopt = Koptω

2
eopt

Kopt =
ρπr5Cp(λopt, β

?)

2N2P 2λ3
opt

, ωeopt =
NPvλopt

r

where Kopt is the constant value and ωeopt is the rotor speed
when the wind turbine generates the maximum power at a
given wind speed. Note that ωeopt is a function of the wind
speed v. In order to track the maximum power point, the
generator torque Te should track the optimal aerodynamic
torque Twopt considering the gear ratio.

Thus the sliding surface for the torque controller is designed
as follows.

Sd = γ1(idref − id)

Sq = Koptω
2
e +

3

2
NPφiq

where γ1 < 0, idref is set to zero for minimizing copper loss
and Sq is to maximize the generating power. If the system
trajectory reaches the sliding surfaces and the rotor speed
converges to its optimal value, then the objective will be
achieved.

The sliding mode torque controller is proposed as follows.
Theorem 1: Suppose that there exists a sufficiently small

positive constant ω?e such that ωe(t) ≥ ω?e ,∀t ≥ 0 for system
(6). Then the sliding mode controller

ud = Rsid − ωeLiq +Kdsgn(Sd) (8)

uq = −4KoptωeL

3NPφ

P

J

(
T̂w
N

+
3

2
Pφiq

)

+Rsiq + ωeLid + ωeφ−Kqsgn(Sq) (9)
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with Kd > 0 and Kq > 0, renders the closed loop system
trajectory reach the sliding surfaces Sd and Sq in finite time.
3

Proof: We choose the Lyapunov function

V =
1

2
S2
d +

1

2
S2
q .

Taking time derivative of V yields

V̇ =SdṠd + SqṠq

=− Sdγ1

(
−Rs
L
id + ωeiq +

ud
L

)

+ Sq

[
2Koptωe

P

J

(
Tw
N

+
3

2
Pφiq

)
(10)

+
3

2
NPφ

(
−Rs
L
iq − ωeid −

ωe
L
φ+

uq
L

)]
.

Substituting the control (8) and (9) into (10), one has

V̇ =− γ1
Kd

L
|Sd| (11)

+ Sq
2KoptωeP

NJ
(Tw − T̂w)− 3

2
NPφ

1

L
Kq|Sq|.

Because the pitch angle β is fixed at β?, the conditions of
Lemma 1 which are essential for operating observer properly
are satisfied. Thus, Tw− T̂w in equation (11) becomes zero in
finite time. Hence,

V̇ = −γ1
Kd

L
|Sd| −

3

2
NPφ

1

L
Kq|Sq|.

From the fact that Kd > 0 and Kq > 0, it follows that
V̇ < 0 when Sd 6= 0 and Sq 6= 0. Therefore, the system
trajectory reaches the sliding surface Sd and Sq in finite time.

Lemma 2: Suppose that v is unknown but constant. Sup-
pose also that there exists λ? such that λ? = max{λ ∈
R|λ < λopt,

Cp(λ,β?)
λ3 =

Cp(λopt,β
?)

λ3
opt

} and let ωe = NPvλ?

r .
Consider the system (6) with the control given in Theorem 1
and suppose that ωe(t) > ωe,∀t ≥ 0. If the system trajectory
reaches the sliding surfaces Sd and Sq and remains there, then
ωe(t) asymptotically converges to ωeopt. 3

Remark 1: The existence of the λ? used in Lemma 2
depends on the parameters in (2). Noting that β? = 0 in
our case, one can prove analytically (or numerically) that
Cp(λ,β?)

λ3 =
Cp(λopt,β

?)

λ3
opt

has two distinct real roots for the
parameters c1, . . . , c6 given in Appendix, which means that
the assumption holds true.

Proof: We choose the Lyapunov function V = 1
2 (ωe −

ωeopt)
2. Assuming that the trajectory is on the sliding surfaces

and taking time derivative of V yield

V̇ =
P

JN
(ωe − ωeopt)(K −Kopt)ω

2
e ,

where we used the assumption that v is constant and K is
given by K = 1

2
ρπr5

N2P 2

Cp(λ,β?)
λ3 . To determine V̇ < 0 for ωe >

ωe, we consider two cases.
Case 1. ωe − ωeopt > 0:

We first note that ωeopt > 0 by Assumption 1 and that λ >

λopt. After simple computation, one sees that Cp(λ, β?) <
Cp(λ

∗, β?) when λ 6= λopt and hence

Cp(λ, β
?)

λ3
<
Cp(λopt, β

?)

λ3
<
Cp(λopt, β

?)

λ3
opt

which means K −Kopt < 0 and that V̇ < 0.
Case 2. ωe − ωeopt < 0:

By assumption we have ωe < ωe < ωeopt and λ? < λ < λopt.
It is a simple matter of computation to have d

dλ
Cp(λ,β?)

λ3 =
a3

λ6 e
−1/λ(a2λ

2 − a1λ + a0) with ai > 0. Let λ1, λ2 with
λ1 < λ2 be two roots of a2λ

2 − a1λ + a0 = 0. Noting
that d

dλ
Cp(λ,β?)

λ3 = 1
λ4

(
λ
dCp(λ,β?)

dλ − 3Cp(λ, β
?)
)

, one has
d
dλ

Cp(λ,β?)
λ3 |λopt < 0 since dCp(λ,β?)

dλ |λopt = 0. This implies
that λ1 < λopt < λ2 and that, by continuity, there exists some
λ† with λ? < λ† < λopt such that Cp(λ†,β?)

λ†3 >
Cp(λopt,β

?)

λ3
opt

.
Thus, from the definition of λ?, it follows that K −Kopt > 0
for λ? < λ < λopt. Therefore, V̇ < 0 when ωe < ωe < ωeopt.

From the results considered in the cases 1 and 2, one
has V̇ < 0 whenever ωe < ωe, and as a result, ωe(t)
asymptotically approaches ωeopt.

From Theorem 1 and Lemma 2, it follows that the wind
power system with the controller given by (8) and (9) can
generate maximum power provided that ωe(t) > max{ωe, ω?e}
and v is constant.

C. Pitch Controller Design

Assuming that the torque control works well, the generating
power is given by

Pe = Teωg = Te
ωe
P

= −Koptω
3
e

NP
.

From this equation, we note that the generating power is
determined by the rotor speed ωe. When the wind speed is
above the rated speed, the power should be regulated and this
is done by the pitch controller. In order to regulate the power,
we control the pitch angle β so that ωe approaches the rated
value ω†e, which means that Pe converges to its rated value.
Hence the target value of Pe is given by

P †e = −Koptω
†
e
3

NP
.

We design a pitch controller so that it only operates in the
range of ωe > ω†e.

Now, we consider the drive train model which contains β.
If the torque control performs well, then the rotor dynamics
becomes

ω̇e =
P

J

(
Tw
N

+ Te

)

=
P

J

(
1

2

ρπr2v3NPCp(λ, β)

ωeN
− Koptω

2
e

N

)
.

(12)

The pitch angle dynamics, which is modeled as a first order
system, is given by

dβ

dt
=

1

Tβ
(uβ − β)

where uβ is the control to be designed.
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In order to use the sliding mode control, we linearize the
equation (12) with respect to the pitch angle β. To do this, we
define

x1 = ωe

x2 = ω̇e =
P

J

(
Tw
N

+ Te

)
=

P

JN

(
Tw −Koptω

2
e

)
.

Then one has

ẋ1 = x2

ẋ2 =
P

JN

(
−ACp

x2

x2
1

+
Ax2

x1

∂Cp
∂x1

− Aβ

x1Tβ

∂Cp
∂β

+
3ACp
vx1

v̇ +
A

x1

∂Cp
∂v

v̇ − 2Koptx1x2

)
(13)

+
PA

JNTβx1

∂Cp
∂β

uβ

where A = ρπr2v3NP
2 .

We make the following assumption, which is true for the
parameters used in this paper.

Assumption 2: When x1 > ω†e, ∂Cp

∂β < 0 and there exists
a constant C̄pβ such that 0 < C̄pβ < |∂Cp

∂β |. 3

Before proceeding, let v̂ = (v + v)/2 which is assumed to
be known and define

Â =
ρπr2v̂3NP

2
Ĉp = Cp(λ, β)|v=v̂

x̂2 =
P

JN
(T̂w −Koptω̂

2
e).

We define the sliding surface for the pitch controller as
follows.

Sβ = x2 + γ2(x1 − ω†e)

where γ2 > 0 is constant. The sliding surface Sβ is designed
so that the rotor speed converges to its rated value and remains
still. The proposed sliding mode pitch controller is given by

uβ = β − â1 + â2

b̂
−Kβsgn(Ŝβ) (14)

where

â1 = − P

JN
2Koptx1x̂2 + γ2x̂2

â2 = − P

JN
ÂĈp

1

x2
1

x̂2 +
P

JN

Â

x1
x̂2
∂Ĉp
∂x1

b̂ =
PÂ

JNTβx1

∂Ĉp
∂β

Ŝβ = x̂2 + γ2(x1 − ω†e).

Note that Kβ is the controller gain to be chosen later and that
T̂w is defined in (7).

Now we take the sliding mode controller gain Kβ as
follows. Firstly, define

h = a1 + a2 −
â1 + â2

b̂
b

where

a1 = − P

JN
2Koptx1x2 + γ2x2

a2 = − P

JN
ACp

1

x2
1

x2 +
P

JN

A

x1
x2
∂Cp
∂x1

+
P

JN

3ACp
vx1

v̇ +
P

JN

A

x1

∂Cp
∂v

v̇

b =
PA

JNTβx1

∂Cp
∂β

.

We note that by Assumption 1, a1, a2 and b are bounded and
we can compute

|h|
b

= −
∣∣∣∣
a1 + a2

b
− â1 + â2

b̂

∣∣∣∣ ≥−
∣∣∣∣
a1 + a2

b

∣∣∣∣−
∣∣∣∣
â1 + â2

b̂

∣∣∣∣
≥σ

where

σ = −TβW0

C̄pβ

(
2KoptW0W1

Amin
+ C∗p

W1

ω†e
2 +

W1

ω†e
K1

+
3C∗p

vω†e
V1 +

K3V1

ω†e
+
JNγ2W1

PAmin

)

− TβW0W1

C̄pβ

(
2KoptW0

Â
+ C∗p

1

ω†e
2 +

1

ω†e
K1 +

JNγ2

PÂ

)

with Amin = ρπr2v3NP
2 and C∗p defined in Appendix. Note

that K1 is the bound for |∂Cp

∂ωe
| (see the proof of Lemma 1).

Finally we choose Kβ such that

Kβ < σ.

The following theorem states the convergence result.
Theorem 2: Consider the system (13) and suppose that

ωe > ω†e. Under Assumptions 1 and 2, the sliding mode
controller uβ given by (14) renders the closed loop system
trajectory reach the sliding surface Sβ in finite time. Moreover,
it holds that ωe → ω†e and ω̇e → 0 as t→∞. 3

Proof: We choose the Lyapunov function V = 1
2S

2
β .

Taking time derivative of V yields

V̇ =SβṠβ

=Sβ

[
P

JN

(
−ACp

1

x2
1

x2 +
A

x1
x2
dCp
dx1

− Aβ

x1Tβ

dCp
dβ

+
3ACp
vx1

dv

dt
+
A

x1

dCp
dv

dv

dt

−2Koptx1x2

)
+ γ2x2 +

PA

JNTβx1

dCp
dβ

uβ

]

=Sβ(a1 + a2 − bβ + buβ).
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Applying the control input (14), we have

V̇ =Sβ

(
a1 + a2 −

â1 + â2

b̂
b− bKβsgn(Ŝβ)

)

=Sβ

(
h− bKβsgn(Ŝβ)

)

=Sβh+ Ŝβh− Ŝβh− SβbKβsgn(Ŝβ)

+ ŜβbKβsgn(Ŝβ)− ŜβbKβsgn(Ŝβ)

=(x̂2 − x2)
(
bKβsgn(Ŝβ)− h

)

+ Ŝβh− ŜβbKβsgn(Ŝβ)

≤|bKβsgn(Ŝβ)− h||x̂2 − x2|+ (σ −Kβ)b|Ŝβ |.
In the above equation, x̂2 − x2 is the derivative of the
observation error. Because the pitch controller is only operated
in the region of ωe > ω†e and β is limited by Assumption 1,
the conditions of Lemma 1 are satisfied. Thus x̂2−x2 becomes
zero in finite time. After that instant, it holds that Ŝβ = Sβ
since x̂2 = x2. Finally, it follows that

V̇ ≤ (σ −Kβ)b|Sβ |.

Because V̇ < 0 except at Sβ = 0, the system trajectory reaches
the sliding surface Sβ = 0 in finite time. After that instant,
the dynamics of the system is reduced to

ẋ1 = −γ2(x1 − ω†e).
As a result, the rotor speed x1 asymptotically converges to
ω†e and the rotor acceleration x2 asymptotically converges to
zero, which completes the proof.

Corollary 1: The sliding mode controllers ud, uq and uβ
given in (8), (9) and (14) guarantee that Pe → P †e as t→∞
provided that ωe > ω†e. 3

IV. SIMULATIONS

We design sliding mode controllers for a wind turbine with
a 2.4MW PMSG. In our case, the rated wind speed is 12m/s
and other simulation parameters are given in Appendix. Fig. 2
shows the wind profile. The mean wind speed increases from
11m/s to 14m/s at t=100s and then it keeps over the rated
value with the wind turbulence. The turbulence component is
assumed to have the Kaimal spectra, and in our simulation
the turbulence intensity is 12%. The pitch rate is limited to
8deg/s. The simulation result can be divided into two parts. In
the region ωg ≤ ω†g , the torque controller tries to maximize
the generating power, while in the region ωg > ω†g , the torque
control and pitch control operate in harmony to regulate the
inlet power.

In Fig. 3, the performance of proposed controller is verified
with the wind profile shown in Fig. 2. Since the rated rotor
speed is ω†g = 142.5rad/s, it can be said from the figure that
before (about) 110s, the torque controller is operating, while
after 110s the pitch controller as well as the torque controller
is active. Fig. 3c shows that before 110s the power coefficient
is almost kept its maximum value Cpmax = 0.4382. Thus,
we can say that the torque controller shows good performance
against the wind turbulence in the region ωg ≤ ω†g .
In the power regulating region (or in the region ωg > ω†g),
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the controller should change the pitch angle so that the inlet
power is limited to its rated value, which means that ωg should
be regulated to be ω†g . The results in Fig. 3 also shows that
the generator output power and the mechanical rotor speed
are regulated to their rated values after 110s, respectively. It
is mainly because of the behavior of the pitch angle in Fig
3d. From the simulation results, it turns out that the proposed
controller can successfully regulate the inlet power.

V. CONCLUSION

In this paper, we proposed a control scheme for the wind
turbine system based on a PMSG. An observer is constructed
to estimate the turbine torque and the rotor acceleration, and
with which a torque controller and a pitch controller are
designed employing the sling mode control scheme. In order
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to verify the proposed control strategy, the stability analysis
as well as simulations are performed. Simulation results show
that control objectives are well achieved in spite of the wind
turbulence. Experimental verification of the proposed scheme
is one of important future works.
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APPENDIX

1) Bounds of Cp(λ, β)
We first note that under the condition of ωe ≥ ω?e > 0 and
Assumption 1, it holds that

1

Γ∗
<

1

Γ
<

1

Γ†

where 1
Γ∗ = − 0.035

1+β?3 and 1
Γ† = NPv

rω?
e

.
Moreover, we have

Cp < Cp < Cp

where Cp = c1
(
c2

1
Γ∗ − 90c3 − c490x − c5

)
e−

c6
Γ∗ and Cp =

c1c2
1

Γ† e
− c6

Γ∗ . Thus, one has

|Cp| ≤ C∗p := max{|Cp|, |Cp|}.

2) Partial derivatives of Cp(λ, β)

∂Cp(λ, β)

∂λ
=

−1

(λ+ 0.08β)2
e−

c6
Γ c1

×
(
c2 − c2c6

1

Γ
+ c3c6β + c4c6β

x + c5c6

)

∂Cp(λ, β)

dβ
=e−

c6
Γ c1

{∂ 1
Γ

∂β

(
c2 + c5c6 − c2c6

1

Γ

+ c3c6β + c4c6β
x
)
− (c3 + c4xβ

x−1)
}

where ∂ 1
Γ

∂β = −0.08
(λ+0.08β)2 + 0.035×3β2

(1+β3)2 .

∂Cp(λ(v, ωe), β)

∂ωe
=

−r
NPv(λ+ 0.08β)2

e−
c6
Γ c1

×
(
c2 − c2c6

1

Γ
+ c3c6β + c4c6β

x + c5c6

)

∂Cp(λ(v, ωe), β)

∂v
=

rωe
NPv2(λ+ 0.08β)2

e−
c6
Γ c1

×
(
c2 − c2c6

1

Γ
+ c3c6β + c4c6β

x + c5c6

)

3) System Parameters
Rotor radius r = 41 m
Air density ρ = 1.25 kg/m3

Resistance Rs = 0.1 Ω
Inductance L = 0.005 H
Field flux φ = 10.68 V · s/rad
Equivalent inertia J = 8000 kg ·m2

Number of pole pairs P = 2
Gear ratio N = 77
Time constant of pitch actuator Tβ = 0.1 s
Pitch rate limit Rβ = 8 deg/s
Cp curve
c1 = 0.22, c2 = 116, c3 = 0.4, c4 = 0
c5 = 5, c6 = 12.5, x = 0
β? = 0°, λopt = 6.325, Cpmax = 0.4382

4) Controller Parameters
Observer
µ = 13000, α = 500000, UM = 20
Sliding torque controller
Kd = −1,Kq = −10, γ1 = −1
Sliding pitch controller
γ2 = 0.1, v̂ = 15 m/s,Kβ = −5000
ω†g = 142.5 rad/s
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