• Title/Summary/Keyword: Torque calculation

Search Result 209, Processing Time 0.022 seconds

Sensorless Drive Method using Back EMF Analysis of Single Phase Switched Reluctance Motor (단상 SRM의 역기전력 분석을 통한 센서리스 구동기법)

  • Sun, Han-Geol;Shin, Duck-Shick;Yang, Hyong-Yeol;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2008
  • This paper proposes a sensorless drive method that estimates the rotor position by analysing Back EMF of single-phase Switched Reluctance motor (SRM). The rotor position information is necessary required, because SRM's torque is generated by exciting a stator winding according to rotor position. In order to detect the position of the rotor, the various rotor position sensors have been used. However, most of the position sensors not only increase the construction cost and the volume of the motor but also decrease reliability of driving system with environment. This paper proposed the method using the Back EMF to solve such problems. When a rotor and stator are overlapped, the Back EMF is sharply changed. By detecting this point, the rotor position can be estimated. Thus SRM is driven by turn on and turn off switches at the proper position through speed calculation. The validity of proposed method is verified through simulation and experiment.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

Control of MR Haptic Simulator Using Novel S-chain Model (새로운 S-Chain 모델을 이용한 MR 햅틱 시뮬레이터 제어)

  • Oh, Jong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.291-297
    • /
    • 2018
  • Due to difficulty in minimally invasive surgery, training simulator is actively researched. A volumetric deformable organ is created by employing a shape-retaining chain-linked (S-chain) model to realize positioning a human organ model in virtual space. Since the main principle of the S-chain algorithm is that the repulsive force is proportional to the number of chain elements, the calculation time can be increased according to the magnitude of deformation. In this work, the advanced S-chain algorithm is used to calculate the repulsive torque according to spin motion. Finally, haptic architecture was constructed using this S-chain model by incorporating the virtual organ with a real master device, which allows the repulsive force and target position to be transferred to each other. The control performance of S-chain algorithm has been evaluated via experiment.

Soft Start System of Induction Motor using Emergency Generator (비상 발전기를 이용한 유도전동기의 소프트 기동 시스템)

  • Hwangbo, Chan;Ko, Jae-Ha;Lee, Jung-Hwan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2022
  • In general, in an emergency generator system for an electric facility including an induction motor load, an emergency power generation facility larger than the facility load capacity is built due to the initial starting current of the induction motor. In order to reduce this economic burden, various methods to reduce the inrush current of induction motors are applied to suppress the additional expansion of generators due to the reduction of power generation facilities and the increase in electrical facilities. Among these methods, when a system with a built-in soft start function of an induction motor using an inverter is built, it is the best way to reduce the inrush current of the induction motor to less than the rated current. However, in this case, the installation cost of the inverter to drive the induction motor increases. This paper proposes a soft start method of an induction motor by expanding the frequency and voltage control operation area of an emergency generator. In addition, proposed a speed calculation method based on power factor information, which is essential information for stable soft start of an induction motor, and a method for generating a speed command value of the governor for starting with maximum torque.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

A Study on the Effect of Macro-geometry and Gear Quality on Gear Transmission Error (기어 제원 및 기어 가공정밀도가 기어 전달오차에 미치는 영향에 대한 연구)

  • Lee, Ju-Yeon;Moon, Sang-Gon;Moon, Seok-Pyo;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.36-42
    • /
    • 2021
  • This study was conducted to analyze the effect of the gear specification and gear quality corresponding to the macro geometry on the gear transmission error. The two pairs of gears with large and small transmission errors were selected for calculation, and two pairs of gears were manufactured with different gear quality. The test gears were manufactured by two different gear specifications with ISO 5 and 8 gear quality, respectively. The transmission error measurement system consists of an input motor, reducer, encoders, gearbox, torque meter, and powder brake. To confirm the repeatability of the test results, repeatability was confirmed by performing three repetitions under all conditions, and the average value was used to compare the transmission error results. The transmission errors of the gears were analyzed and compared with the test results. When the gear quality was high, the transmission error was generally low depending on the load, and the load at which the decreasing transmission error phenomenon was completed was also lower. Even when the design transmission error according to the gear specification was different, the difference of the minimum transmission error was not large. The transmission error at the load larger than the minimum transmission error load increased to a slope similar to the slope of the analysis result.

Comparative analysis of torsional and cyclic fatigue resistance of ProGlider, WaveOne Gold Glider, and TruNatomy Glider in simulated curved canal

  • Pedro de Souza Dias;Augusto Shoji Kato;Carlos Eduardo da Silveira Bueno;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte ;Pedro Henrique Souza Calefi ;Rina Andrea Pelegrine
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.4.1-4.10
    • /
    • 2023
  • Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

A Study on the Flow Characteristics around Tidal Current Turbine (조류발전용 터빈 주위의 유동 특성에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.610-616
    • /
    • 2012
  • All the countries in the world is currently facing the full scale of energy-climate era currently, and making strong energy policy that will lead to green growth of the future energy resources by utilizing renewable energy as the basis of entering the advanced country becomes the goal of development that satisfies the demand for energy in 21st century. Recently, ocean energy attracted the attention along with the necessity of developing renewable energy. Ocean energy is the one of most prominent recyclable and clean resources that has not been developed yet. So, it is highly required to develop good tidal current energy conversion system in coastal area. The inflow angle that acts against tidal current turbine, seabed effect and the change of efficiency along the occurrence of cavitation were investigated through the wake flow characteristics in this study. Power coefficient degradation by seabed effect did not appear in the condition of this calculation. Efficiency degradation appeared from above $10^{\circ}$ regarding inflow angle and power coefficient was calculated as lower by 7 % at $45^{\circ}$. Torque and power coefficient increased as inflow velocity rose, but power coefficient degradation appeared from above 3m/s when the cavitation happened. So, it was recognized that the larger inflow angle and occurrence of cavitation become the reason for power degradation through the flow characteristics.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.