• 제목/요약/키워드: Torque Optimization

검색결과 338건 처리시간 0.023초

SRM 드라이브의 운전성능 향상을 위한 스위칭각 특성에 관한 연구 (Study on Switching Angle Characteristics for Driving Performance Improvement of SRM Drive)

  • 오석규;최대완;안진우
    • 전력전자학회논문지
    • /
    • 제6권6호
    • /
    • pp.506-513
    • /
    • 2001
  • SRM의 토크는 상전류와 인덕턱스의 기울기에 따라 달라진다. 그러나 자기회로의 포화로 인하여 원하는 토크를 제어하기 어렵다. 원하는 토크를 발생시키기 위해 SRM 드라이브는 스위치-온각, 스위치-오프각 그리고 인가 접압에 의해 제어된다. 스위치-온, 오프 각 에의해 원하는 전류와 토크를 제어할수있다. 본 논문은 스위치 온, 오프각을 제어하는 최적제어방식을 제안하였다. 스위치 오프 각은 시뮬레이션과 실험을 통하여 효율을 기준으로 결정하였으며, 스위치 온각은 부하에 의해 결정되었다. 도통각은 토크제어와 속도제어를 위해 GA-신경회로망을 이용하여 제어하였다.

  • PDF

스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화 (Optimum Geometric and Electrical Parameter for minimization Torque Ripple of Switched Reluctance Motor)

  • 정성인;최재학;김윤현;김솔;이주;주민식;최동훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.608-610
    • /
    • 2001
  • In this paper, 6/4 Switched Reluctance Motor(SRM) which has simple structure and little switching element is selected basic analysis model. In order to reduce torque ripple causing noise and vibration, we execute optimization of geometric parameters (stator and rotor pole arc) and electrical parameters (turn-on angle and turn-of angle) by means of combining Fletcher-Reeves's Conjugate Directions and Finite Element Method (FEM) considering driving circuits. When considering the switching condition according to inductance profile, torque characteristics is influenced by geometric and electrical parameters importantly. The pole arc and switching angle of the optimum can also obtain the low torque ripple without high currents.

  • PDF

Analysis of High Torque and Power Densities Outer-Rotor PMFSM with DC Excitation Coil for In-Wheel Direct Drive

  • Ahmad, M.Z.;Sulaiman, E.;Kosaka, T.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.265-272
    • /
    • 2015
  • In recent years, flux switching machines (FSMs) have been an attractive research topic owing to their tremendous advantages of robust rotor structure, high torque, and high power capability suitable for intensive applications. However, most of the investigations are focusing on the inner-rotor structure, which is incongruous for direct drive applications. In this study, high torque and power densities of a new 12S-14P outer-rotor permanent magnet (PM) FSM with a DC excitation coil was investigated based on two-dimensional finite element analysis for in-wheel direct drive electric vehicle (EV). Based on some design restrictions and specifications, design refinements were conducted on the original design machine by using the deterministic optimization approach. With only 1.0 kg PM, the final design machine achieved the maximum torque and power densities of 12.4 Nm/kg and 5.93 kW/kg, respectively, slightly better than the inner-rotor HEFSM and interior PM synchronous machine design for EV.

지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구 (A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control)

  • 유봉수;구성완;조중선
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.787-796
    • /
    • 2008
  • 매니퓰레이터와 환경과의 충돌 시 충격량을 줄이기 위해서는 유효질량이 최소화되는 자세가 요구되므로 자체운동(self motion)을 통하여 이러한 자세를 유지해야 한다. 이때 여유자유도를 분해하기 위하여 관절 토크 국소 최소화 알고리즘을 이용할 수 있다. 본 논문에서는 매니퓰레이터와 환경과의 충돌 시 충격 및 손상을 줄이기 위해 기구학적인 여자유도를 이용하여 관절토크를 최소화시킴과 동시에 충돌을 최소화시키는 새로운 제어 알고리즘을 제안한다 이 알고리즘은 기존의 국소 토크 최소화 알고리즘과 국소 충돌 최소화 알고리즘에 퍼지 로직과 유전자 알고리즘을 적용시킨 것이다. 제안된 알고리즘은 3자유도 평면 여자유도 매니퓰레이터에 적용하였으며, 시뮬레이션 결과를 통하여 제안된 알고리즘의 타당성을 확인하였다.

산업용 볼밸브의 구조 해석 및 토크 저감 설계 (Structure Analysis and Torque Reduction Design of Industrial Ball Valve)

  • 하선호;김상진;송정일
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.37-45
    • /
    • 2014
  • Ball valves are used as a key element in the process industries. The industrial development of valves has increased steadily, but continued improvement requires high design reliability and long service life. Currently, the development of high performance valves is not easy because of the lack of relevant technology in Korea. Valves are being imported at a level of up to 58 percent of the domestic market, which represents a value of almost 7 million US dollars. Therefore, in this work, the improvement of the design and performance of industrial valves has been studied in an attempt to achieve valves that will have longer service life and better output during operation. The structural stability was evaluated using the ANSYS FSI (Fluid-Structural Interaction) module. Moreover, to obtain maximum product reliability, torque analysis simulation was performed to compare and experimental results. The simulation results were used to predict the change in torque by changes in shape, thereby reducing the time and cost of manufacturing a number of prototypes for experimental validation.

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.

유전알고리즘을 이용한 18자유도 인간형 로봇의 자세 최적화 (Optimization of Whole Body Cooperative Posture for an 18-DOF Humanoid Robot Using a Genetic Algorithm)

  • 최국진;홍대선
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1029-1037
    • /
    • 2008
  • When a humanoid robot pushes an object with its force, it is essential to adequately control its posture so as to maximize the surplus torque far all joints. For such purpose, this study proposes a method to find an optimal posture of a humanoid robot using a genetic algorithm in such a way that the surplus torque for all joints is maximized. In this study, pushing motion of an 18-DOF humanoid robot is considered. When the robot takes a cooperative motion to push an object, the palms and soles are assumed to be fixed at the object and ground respectively, and are subjected to sense the reaction force from the object and the ground. Then, the torques for all joints are calculated and reflected to fitness function of the genetic algorithm. To verify the effectiveness of the proposed method, a number of simulations with different fitness functions are carried out. The simulation result shows that the proposed method can be adopted to find optimized posture in cooperative motion of a humanoid robot.

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF

HAI 제어기에 의한 SynRM의 효율 최적화 제어 (Efficiency Optimization Control of SynRM Drive with HAI Controller)

  • 최정식;고재섭;이정호;김종관;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.743-744
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.