• Title/Summary/Keyword: Torque Generator

Search Result 299, Processing Time 0.033 seconds

A study on the cogging torque reduction and the performance improvement of AFPM generator (AFPM발전기의 코깅토크 저감 및 특성 향상에 관한 연구)

  • Jang, Joong-Keun;Joo, Sung-Jun;Kim, Chang-Eob
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.808-809
    • /
    • 2015
  • 본 논문은, 24극 18슬롯을 갖는 1kW 풍력발전용 AFPM발전기의 코깅토크 저감과 특성향상에 관한 논문이다. 코깅토크 저감 방법에는 여러 가지가 있으나 본 논문에서 두 가지의 방법을 제안하였고, 제안된 방법 두 가지를 혼합하여 최적화를 진행하고 코깅토크는 최소가 되고, 기전력은 최대가 되는 최적점을 찾는 최적화를 진행하여 발전기의 특성을 향상시키는 논문이다.

  • PDF

Development of Roadway-Departure Prevention System and HiLS (차선이탈방지 알고리듬 및 HiLS 개발)

  • 장승호;최두진;고정완;김상우;박부견
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.216-216
    • /
    • 2000
  • In this paper, we introduce a new roadway-departure prevention algorithm and the developed Hardware-in-the-Loop-Simulator (HiLS) for applying the new algorithm. A sliding-mode controller is used for lateral position control. And, the HiLS consists of real car elements, a micro-control board, and a self-aligning torque generator Finally from the display module, the perspective view and bird view of the animated vehicle can be seen simultaneously.

  • PDF

Modeling and Simulation of Small and Medium-sized Ships for Fuel Reduction Rate Verification (연료 감소율 검증을 위한 중소형 선박의 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.914-921
    • /
    • 2022
  • The International Maritime Organization (IMO) has set a goal of reducing ship's carbon dioxide emissions by 70% and greenhouse gas emissions by 50% by 2050 compared to 2008. Shipowners and shipyards are promoting various R&D activities such as LNG propulsion, ammonia propulsion, electric propulsion, CO2 capture, and shaft generators as a way to satisfy this problem. The dual shaft generator has the advantage that it can be directly applied to an existing ship through remodeling. In this paper, the total fuel reduction rate that can be obtained by applying the shaft generator to the existing ship was verified through simulation. For this purpose, the size of the medium-sized ship was defined, and the governor, diesel engine, propeller, torque switch, generator for shaft generator, propulsion motor for shaft generator, and ship model were modeled and simulated.

A Study on Design of 50kW PMSG for Micro-grid Application (마이크로그리드용 50kW급 PMSG 설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Kim, Hyoung-Gil;Chang, Young-Hak;Park, Tae-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.527-536
    • /
    • 2014
  • In this paper, the 50kW aerogenerator which is applicable to the microgrid was designed and analyzed by using commercial simulation program Maxwell 2D. Particularly, the suggested PMSG to reduce the cogging torque introduced the offset and skew concept. The suggested optimal value of offset and skew was decided by 2mm and 60 degree of electric angle. The simulation results of the PMSG when load operation condition showed the average harmonic distortion 1.3%, voltage 322.41V, current 94.95A, and iron loss 9.73W, eddy current loss 73.68W, copper loss 3.52kW. The capacity of aerogenerator calculated 61.56kW, and the suggested design process can be applied to higher capacity generator.

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.

The Adaptive Maximum Power Point Tracking Control in Wind Turbine System Using Torque Control (토크제어를 이용한 풍력발전시스템의 적응 최대 출력 제어)

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • The parameter K which decides how much to convert wind energy to electric energy in MPPT(maximum power point tracking) control of wind turbine system using torque controller is changed because blade shape and air density change. If the parameter K is not optimal value, power lose occur. The changed parameter K is important issue in wind turbine system. In this paper, to solve this problem, considering wind turbine system using back-to-back converter control and torque control, we propose the adaptive MPPT algorithm which performs fast control by using initial K, estimates mechanical power using Kalman filter method, uses the estimated mechanical power as input for MPPT algorithm again, and consequently performs optimal MPPT control.

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

Soft Start System of Induction Motor using Emergency Generator (비상 발전기를 이용한 유도전동기의 소프트 기동 시스템)

  • Hwangbo, Chan;Ko, Jae-Ha;Lee, Jung-Hwan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2022
  • In general, in an emergency generator system for an electric facility including an induction motor load, an emergency power generation facility larger than the facility load capacity is built due to the initial starting current of the induction motor. In order to reduce this economic burden, various methods to reduce the inrush current of induction motors are applied to suppress the additional expansion of generators due to the reduction of power generation facilities and the increase in electrical facilities. Among these methods, when a system with a built-in soft start function of an induction motor using an inverter is built, it is the best way to reduce the inrush current of the induction motor to less than the rated current. However, in this case, the installation cost of the inverter to drive the induction motor increases. This paper proposes a soft start method of an induction motor by expanding the frequency and voltage control operation area of an emergency generator. In addition, proposed a speed calculation method based on power factor information, which is essential information for stable soft start of an induction motor, and a method for generating a speed command value of the governor for starting with maximum torque.

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.