• Title/Summary/Keyword: Torque Generator

Search Result 299, Processing Time 0.051 seconds

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF

Characteristics Analysis of Generator by Load Variation (부하변동에 따른 발전기 특성해석)

  • Kim, Jong-Gyeum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.507-510
    • /
    • 2006
  • 본 논문은 신재생에너지의 한 분야로서 청정에너지인 소수력 발전시스템 운영시 수용가 부하의 변동에 따른 발전기의 특성변화를 해석한 것이다. 모의에 사용된 동기발전기-전동기가 부하의 변동에 따라 토크, 속도, 전류 등이 어떤 영향을 받는지 전자계 과도해석 프로그램을 사용하여 나타내었다.

  • PDF

Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator (디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동)

  • 이돈출
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

Study on Doubly Fed Induction Generator in a wind turbine (DFIG 풍력발전시스템에 관한 연구)

  • Han, Sang-Yul;Cha, Sam-Gon;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.253-256
    • /
    • 2006
  • This paper shows operating characteristics of DFIG(Double Fed Induction Generator) for wind turbine. The back to back PWM voltage-fed inverter connected between the rotor and grid network operated sub and super-synchronous operating mode, and the vector-controlled DFIG enables the decoupling between active and reactive power as well as between torque and power factor. This paper is validated by simulations and experimental results.

  • PDF

Design and Performance Analysis of Axial-Flux Permanent-Magnet Generator for Wind Energy System Applications (횡자속형 영구자석 풍력발전기 설계 및 특성해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Bae, Sung-Woo;Choi, Kyeong-Ho;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.949-951
    • /
    • 2002
  • Permanent-magnet (PM) synchronous generator is feasible for use with a wind turbine, because the generator for wind power requires variable-speed generation, light weight, and high torque. In this paper, basic design and construction of an axial-flux permanentmagnet generator with power output at 60 [Hz], 300 [r/min] for wind energy system is introduced. Finite-element method (FEM) is applied to analyze generator performance. In order to save time, equivalent analysis model is developed. The performance of the proposed generator at no-load and resistive load are compared, and power output and voltage at various speed and loads are compared as well. The results of FE analysis show that this PM generator is a useful solution for small-scale wind-turbine applications.

  • PDF

Wound-rotor induction generator system for random wave input power

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this paper, the two-axis theory is adopted to analyze the secondary excited induction generator applied to random wave input generation system. The analysis by the two-axis theory helps to know the transmitted power of the induction machine. The electric variables, like as primary and secondary currents, voltages, and electric output power, were able to express as equations. These equations are help to simulate the generation system numerical model and to know the transient state of the system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled VSI connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this method, the input torque simulator in the laboratory to drive the secondary excited results show the advantage of secondary excited induction generator system for the random input wave generation system.

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

Fault characteristic analysis of a modularized HTS field coil-based 12 MW class SCSG (모듈화된 계자코일을 가지는 12 MW급 초전도 발전기의 고장 특성 분석)

  • Go, Byeong-Soo;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1108-1109
    • /
    • 2015
  • In general, when a high-temperature superconducting (HTS) field coil breaks down, the overall field coils of a superconducting synchronous generator (SCSG) are also stopped working, because of the HTS field coils are connected in series. Therefore, the HTS field coils have to be modularized. The modularized HTS field coil is operated individually. Therefore, even if the HTS field coils are broken-down, the generator still operates under the fault conditions. But the output power and torque of the generator will be affected. This paper deals with the fault characteristics analysis of a 12 MW class SCSG with the modularized HTS field coils when the coils were broken-down. The steady-state and transient state characteristics of the modularized 12 MW class SCSG were analyzed and compared. The fault characteristics analysis results of the 12 MW class superconducting generator for the wind turbines were discussed in detail.

  • PDF

Analysis of the cooling system for a superconducting generator (초전도발전기의 냉각시스템 해석)

  • Kim, K.W.;Chung, T.E.;Shin, H.-C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.446-453
    • /
    • 1997
  • The superconducting winding in rotor of a superconducting generator should be kept at extremely low temperature of 4-5 K to maintain the superconducting state. For this purpose the liquefied helium is used for the coolant and it is very important to analyze and design a cooling system making effective use of the coolant. In this paper, the typical heat exchanger of a superconducting generator with the flow passage is analyzed with regard to the thermal equilibrium. An experimental constant relevant to the flow condition in the flow passage is determined with heat exchange experiments in cryostat. Also a new heat exchanger with porous material is proposed and designed. Results of the numerical analysis for the temperature distributions for the torque tube and the coolant are reported and the efficiency of the heat exchanger is discussed from the viewpoint of amounts of coolant needed.

  • PDF

Improved back-EMF of 30kW Interior Permanent Magnet Synchronous Generator for Small Hydropower Generation (소수력 발전용 30kW급 매입영구자석형 동기발전기의 역기전력 개선)

  • Kim, Daekyong;Jeong, Hak-Gyun;Park, Han-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.660-665
    • /
    • 2014
  • This paper presents the improved back-EMF of Interior Permanent Magnet Synchronous Generator(IPMSM) for small hydropower generator. To improve back-EMF characteristics, the size and position of notch are applied to the rotor. In addition, parametric analysis of the notch size and position was performed. Finally, the back-EMF characteristic analysis are confirmed by the experimental results.