• Title/Summary/Keyword: Torque Effects

Search Result 595, Processing Time 0.021 seconds

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

Effects of Edged Curve Angle of Rotary Blade on Entwining Spreaded Rice Straw in Paddy (볏짚 시용(施用) 답(畓)의 Rotary 경운시(耕耘時) 날의 궤적(軌跡) 진입각(進入角)이 볏짚 감김에 미치는 영향(影響))

  • Yi, Woon Young;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.103-112
    • /
    • 1986
  • This study was carried out to prevent the entwining of rice straw on rotary shaft and blade where rice straw was spreaded on paddy field as an organic source before rotary tilling. The rotary tillage was conducted in the paddy field having the soil moisture contents of 30%, 39%, 59% in dry basis and spreaded rice straw (450kg/10a) of 30cm, 45cm, 90cm length with the edged curve angles of rotary blade of $30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $55^{\circ}$ at Yuseung area. And the test were performed on the plot which has width of 30cm and 5cm length and the quantity of entwined rice straw was analized. The test results were summarized as the followings. 1. Entwining phenomenon of rice straw was decreased as the blade edged curve angle increased. The edged curve angle of rotary blade must be determind by considering the characteristics of soil cutting resistance, tilling torque and entwining phenomenon of rice straw. But according to the entwining phenomenon of rice straw only, the edged curve angle of rotary blade should be bigger than $55^{\circ}$ for design. 2. Amount of entwining rice straw was minimized when soil moisture contents was 30 percent (d. b.). It would be better that rotary tillage is performed when soil moisture contents is lower than 30 percent in dry basis. 3. Amount of entwining rice straw was minimized when the length of rice straw was 30cm with $55^{\circ}$ edged curve angle. Therefore, it would be better to chop rice straw as 30cm. 4. Entwining phenomenon of rice straw was decreased as the forward speed decreased. To decrease the entwining rice straw, rotary tillage should be done with forward fist gear (0.35m/s).

  • PDF

A photoelastic study on the initial stress distribution of the upper anterior teeth retraction using combination loop archwire and sliding mechanics (Combination loon archwire와 활주역학을 이용한 상악전치의 후방 견인시 나타나는 초기 응력 분포에 관한 광탄성학적 연구)

  • Yim, Kang-Soon;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.303-312
    • /
    • 2004
  • An unfavorable tipping movement can occur during the retraction of anterior teeth because orthodontic force is loaded by brackets positioned far from the center of resistance. To avoid this unfavorable movement, a compensating curved wire or lingual root torque wire is used. The purpose of this study is to investigate, using photoelastic material, the distribution of initial stress associated with the retraction of the incisors according to the degree of the compensating curve, to model changes associated with tooth ud alveolar bone structure. The following results were obtained by analysis of the polarizing plate of the effects of initial stress resulting from retraction of the anterior teeth: 1. When the incisors were retracted using combination archwire or sliding mechanics, the maximal polarizing pattern of the apical area decreased as the degree of the compensating owe increased from 0 to 15 to 30. 2. When the incisors were retracted by the combination archwire or sliding mechanics, the maximal polarizing pattern of the canine and premolar area increased as the degree of the compensating curve increased from 0to 15to 30. 3. A lower degree of polarizing patterns were associated with the combination archwire technique than the sliding mechanics technique at a given force. The above results indicate that there is no significant difference between the combination loop archwire technique and sliding mechanics, for the retraction of maxillary anterior teeth with decreased lingual tipping tendency by a compensating curve on the arch wire. However, the use of sliding mechanics is more effective for the prevention of lingual inclination of the anterior teeth, because the hook used in sliding mechanics is closer to the center of resistance of the maxillary anterior teeth.

Effect of Processing Additives on Vulcanization and Properties of EPDM Rubber (EPDM 고무의 첨가제에 따른 가류 및 물성에 미치는 영향 연구)

  • Lee, Soo;Bae, Joung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.173-185
    • /
    • 2018
  • Effects of three different types of dispersions and flow improving additives composed with fatty acid esters, fatty acid metal salts and amide compound on the vulcanization and the mechanical properties properties of rubber compounds of EPDM and carbon black as fillers. were investigated using Mooney viscometer, moving die rheometer, hardness tester, and universal test machine. The aging characteristics of vulcanized EPDM compounds were also investigated. The Mooney viscosity measured at $125^{\circ}C$ showed a tendency to decrease in the order of amide type> metal salt type > ester type additive. Scorch time showed little or no difference with the addition of ester or metal salt type additives, but the amide type additive shortened a scorch time more than one minute. Rheological measurement data obtained at $160^{\circ}C$ showed that the vulcanization time was faster for metal salt type and amide type additive systems. Delta torque values of EPDM compound increased with metal salt type and amide type additives, but slightly decreased with ester type additive. The tensile strength of the EPDM compound was greatly improved when an ester type additive was added, but the amide type or metal salt type additive had no significant effect. The elongation was significantly improved for metal salt type additive, while the rest were not significantly affected. The tear strength of the EPDM compounds increased with the addition of all kinds of additives, and it increased remarkably in the case of metal salt type additive. Hardness of the EPDM compounds was nearly same value regardless of additive types. The thermal aging of the EPDM blend at $100^{\circ}C$ for 24 h showed little change in the case of metal salt type or amide type additive, but the elongation tends to decrease by 10-20% for all EPDM compounds containing additives.