• Title/Summary/Keyword: Torque Density

Search Result 307, Processing Time 0.036 seconds

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

Optimal Design of Magnetizing Fixture to Reduce Cogging Torque in Brushless DC Motors by Sequential RSM (순차적반응표면법을 이용한 착자요크 최적설계)

  • Hwang, Kyu-Yun;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.828-829
    • /
    • 2008
  • This paper proposes a new pole shaped magnetizing fixture with a non uniform air gap for sinusoidal magnetizing a ring type permanent magnet (PM) to reduce the cogging torque. To obtain more sinusoidal distributed magnetic flux density, the magnetizing fixture's pole shape is optimized by using the sequential response surface method (RSM). And the effects of each design parameter were investigated using the magnetic analysis combined a time stepping finite element method (FEM) with Preisach model. It has been shown, through numerical analysis the optimized modelgives near sinusoidal distributed air gap flux density and drastically reduced cogging torque.

  • PDF

Analysis of the Torque Characteristics and Loss Distribution of the Rotor Bar of an Inverter-fed Cage Induction Motor with Skewed Slots (사구슬롯이 있는 3상 농형 유도 전동기의 인버터 구동시 토오크 특성 및 회전자 바 동손분포 해석)

  • Kim, Byeong-Taek;Choe, Byeong-Il;Park, Seung-Chan;O, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.797-806
    • /
    • 2000
  • In this paper, the torque characteristics and the bar loss distribution are analyzed when a general cage induction motor with skewed slots is fed by a 6-step inverter. For the electromagnetic analysis, time-stepping finite element method is used. And the multi-slice technique and sliding surface technique are respectively utilized to consider the skew effect and the rotation of the rotor. As a result, the effects of skewed rotor bar and the inverter output voltage on the characteristics of the torque and bar loss in the rotor are investigated. The simulation results are verified by measurement of flux density distribution axially in the stator teeth.

  • PDF

Design of 3MW Class Outer Rotor Type PMSG for Wind Turbine (풍력발전용 3MW급 외부회전자형 영구자석 동기발전기 설계)

  • Kim, Tae-Hun
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.41-49
    • /
    • 2010
  • Over the last decade, wind turbine industry has rapidly increased around world. These days many parts of the wind generators are induction generator. But it has some problems such as gearbox failure, rotor excitation and maintenance. Thus many manufacturers are considered permanent magnet synchronous generator named PMSG and direct drive. PMSG uses NdFeB magnet has many the advantage compare with induction generator. In this study, 3MW class outer rotor type PMSG for wind turbine is proposed. The generator features 2.6m stator outer radius, 1200mm stator length, 81 pole pairs, 14 rated rpm, 42kN/$m^2$ shear force density and 94.2% efficiency. Design and analysis generator using FEM program. Then calculate and derivate no load voltage, losses, conductor temperature. To reduce total harmonic distortion and cogging torque, the stator is applied the stator skewing. And to evaluate the designed generator, compare with other generators by active mass per rating torque and torque density.

A Study on the Skewed Stator Slots and Skewed Rotor Magnet Segments of BLDCM (BLDCM에서의 스쿠슬롯과 스큐자극에 대한 고찰)

  • 김광헌;심동준;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.643-655
    • /
    • 1991
  • The analysis method on air gap permeance distribution, air gap MMF distribution, air gap flux density distribution, cogging torque and BEMF about the skewed stator slots or the skewed rotor magnet segments for BLDCM, respectively, is studied as a function of the skew ratio. The proposed method describes the differences between the skewed stator slots and teh skewed rotor magnet segments for the air gap permeance distribution, air gap MMF distribution and air gap flux density distribution. The reliability of the method is also confirmed by the waveform of the cogging torque and BEMF through experiments. And the result shows that the effects on the cogging torque and BEMF due to the skewed stator slots or the skewed rotor magnet segments are the same. In case of the skewed stator slots, the effects of the variations of the winding resistance and inductance are also studied.

Development of Friction Torque Measurement Device for Spherical Hydrostatic Bearing (구면 정압베어링의 마찰토크 측정장치 개발)

  • 함영복;최영호;박경민;윤소남;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-186
    • /
    • 2002
  • Lately, as going on increasing in the demand of high power density(power/weight), it is necessary for hydraulic axial piston pump/motor to operate more high pressure and speed. But in these condition, there are some trouble like as friction loss. To reduce this friction loss, hydrostatic bearing is used far axial piston pump/motor frequently. In general, it is difficult to measure accurate friction torque of spherical hydrostatic bearing in the use of the existing devices. So, we have developed the measurement device using the reaction torque sensor to obtain the pure friction torque, fitted in the casing. In this report, we intend to make an introduction about this measurement device for friction torque of the spherical wear part and clarify the effect of friction characteristics on supply pressure and rotational speed with three types of pocket size by using this measurement device.

  • PDF

Analysis of the Magnetic Force and Torque of a Rotatory Two-Phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.829-835
    • /
    • 2006
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced vibration due to its inherent structure. This paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

  • PDF

Rotor Pole Shape Design for Reducing a Cogging Torque in Spoke Type BLDC Motor (코깅 토오크 저감을 위한 Spoke형 BLDC 전동기의 회전자 극 형상설계에 관한 연구)

  • Hwang, Kyu-Yun;Rhee, Sang-Bong;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.860-868
    • /
    • 2007
  • In this paper. design of spoke type BLDC motor which have a characteristics of concentrating fluxes and relatively high reluctance torque among IPM BLDC motors has been researched. To reduce cogging torque and torque ripple. rotor pole shape of optimal design is proposed. To clearly see the effects due to the changed rotor pole shape. magnetic circuit model. 2D FEM and design of experiments (DOE) are used. Then considering these results proper rotor pole shape which have an good effect on air gap flux density and cogging torque. back-emf is designed. Moreover. the validity of proposed model in this paper is also verified by comparison between gained experiment and analysis data.

Effect of Slot Opening on the Cogging Torque of Fractional-Slot Concentrated Winding Permanent Magnet Brushless DC Motor

  • Yan, Jianhu;Zhang, Qiongfang;Feng, Yi
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.78-82
    • /
    • 2016
  • Cogging torque will affect the performance of a permanent magnet Brushless DC Motor (BLDCM), thus the reduction of cogging torque is key for BLDCM optimization. In this paper, the phase shifting of cogging torque for a fractional-slot concentrated winding BLDCM is analyzed using the Maxwell tensor method. Moreover, a 9-slot 10-pole concentrated winding BLDCM driven by ideal square waveform is studied with the finite element method (FEM). An effective method to reduce the cogging torque is obtained by adjusting the slot opening. In addition, the influences of different slot openings on back electromotive force (back-EMF), air gap flux density and flux linkage are investigated and experimentally validated using the prototype BLDCM.