• 제목/요약/키워드: Torque Controller

검색결과 988건 처리시간 0.024초

토크 한계를 갖는 불확실한 로봇 매니퓰레이터의 퍼지 논리를 이용한 강인 제어기의 설계 (Design of a Robust Controller for Uncertain Robot Manipulators with Torque Saturation using a Fuzzy Algorithm)

  • 최형식;박재형
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.138-144
    • /
    • 2000
  • Robot manipulators, which are nonlinear structures and have uncertain system parameters, have complex in dynamics when are operated in unknown environment. To compensate for estimate errors of the uncertain system parameters and to accomplish the desired trajectory tracking, nonlinear robust controllers are appropriate. However, when estimation errors or tracking errors are large, they require large input torques, which may not be satisfied due to torque limits of actuators. As a result, their stability can not be guaranteed. In this paper, a new robust control scheme is presented to solve stability problem and to achieve fast trajectory tracking in the presence of torque limits. By using fuzzy logic, new desired trajectories which can be reduced are generated based on the initial desired trajectory, and torques of the robust controller are regulated to not exceed torque limits. Numerical examples are shown to validate the proposed controller using an uncertain two degree-of-freedom underwater robot manipulator.

  • PDF

구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘 (Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot)

  • 정병진;김태근;원건;김동섭;황정훈
    • 로봇학회논문지
    • /
    • 제13권3호
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

A Comparative Study of Operating Angle Optimization of Switched Reluctance Motor with Robust Speed Controller using PSO and GA

  • Prabhu, V. Vasan;Rajini, V.;Balaji, M.;Prabhu, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.551-559
    • /
    • 2015
  • This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.

3자유도 로봇의 하이브리드 위치/힘 제어 (Hybrid Position/Force Control of 3 DOF Robot)

  • 양선호;박태욱;양현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

순전기자동차용 타여자직류기의 속도제어기 설계 (Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles)

  • 현근호
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

수종의 임플란트 토크 조절기의 정확성 비교 (Comparison of Accuracy of Implant Torque Controllers)

  • 김대곤;조리라;박찬진
    • 구강회복응용과학지
    • /
    • 제24권2호
    • /
    • pp.157-168
    • /
    • 2008
  • 네 종류의 토크 조절기(전자 토크 조절기($Br{\aa}nemark$), 토크 최대값 제한 장치(Pentaborn), 토크 표시 장치(ITI), 콘트라앵글 토크장치(Anthogyr))를 이용하여 나사의 조임 및 풀림 토크값을 측정하여 적정 토크 값과 토크 조절기를 통해 적용되는 실제 토크값에 대한 차를을 측정하여 토크 조절기의 정확도를 비교, 분석하였다. 풀림토크의 평균값 및 최대값과 최소값을 살펴 본 결과 Pentaborn과 같은 토크 최대값 제한 장치의 정확도가 다른 세 종류의 토크 조절기에 비해 우수한 것으로 나타났으며 15회 정도의 조임과 풀림은 큰 영향을 미치지 않지만 그 이상의 조임과 풀림은 정확한 토크 조절에 나쁜 영향을 미치는 것을 알 수 있었다. 그러므로 토크 조절기가 일정하고 정확한 토크값을 반복적으로 유지하는지 확인 및 교정하면서 임상적으로 적용해야 할 것으로 사료된다.

Robust Control of Induction motor using Fuzzy Sliding Adaptive Controller with Sliding Mode Torque Observer

  • 윤병도;류홍우;임익헌;김찬기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.420-425
    • /
    • 1996
  • In this paper a robust speed controller for an induction motor is proposed. The speed controller consists or a fuzzy sliding adaptive controller(FSAC) and a sliding mode torque observer(SMTO). FSAC removes the problem or oscillations caused by discontinuous inputs of the sliding mode controller. The controller also provides robust characteristics against parameter and sampling time variations. Although, however, the performance of FSAC is better than PI controller and fuzzy controller in robustness, it generates the problem of slow response time. To alleviate this problem, a compensator, which performs feedforward control using torque signals produced by SMTO, is added. The simulation and hardware implementation results show that the proposed system is robust to the load disturbance, parameter variations, and measurement noises.

  • PDF

유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기 (Hybrid Fuzzy Controller for DTC of Induction Motor Drive)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

퍼지제어기를 이용한 농형 유도 전동기의 직접 토크제어 (Direct Torque Control of Squirrel Cage Typed Induction Motor Using Fuzzy Controller)

  • 한상수
    • 한국정보통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.122-129
    • /
    • 2008
  • 기동 시나 갑작스런 토크명령 변동에 빠른 토크응답 특성을 갖는 퍼지 논리 제어기를 이용한 농형 유도 전동기의 직접 토크제어 방식을 제안하였다. 퍼지 제어 알고리즘은 기존의 DSC(Direct Self Controller) 제어 원리를 기저로 하여 제안하였으며 퍼지 추론 및 비 퍼지화를 거쳐 수행된다. 유도전동기의 자속과 토크는 광범위한 속도 영역에서 비 간섭 및 우수한 동특성을 갖는 회전자 자속 기준 동특성 모델을 사용하였다. 실험 결과 제시한 퍼지 제어 알고리즘은 우수한 동특성 및 적응적 특성을 갖으며 전동기 변수와 동작 조건의 변동에 민감하지 않고 강인하다.

Torque Control Strategy for High Performance SR Drive

  • Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.538-545
    • /
    • 2008
  • This paper attempts to summarize torque control strategy for high performance SR drive. There are primarily two strategies for torque control. One method is direct torque control, which uses the simple control scheme and hysteresis controller to reduce the torque ripple. Another method is indirect torque control, which uses the complicated algorithms or simple distribution function to distribute each phase torque and obtain current command. The current controller is used to control phase torque by a given current command. In order to compare these two strategies of torque control, five torque control methods are introduced. The advantages and disadvantages of each method are presented. At last, they are verified by some simulations and experimental results.