• Title/Summary/Keyword: Topology optimization design

Search Result 464, Processing Time 0.023 seconds

Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer

  • Lee, Dongkyu;Shin, Soomi;Park, Hyunjung;Park, Sungsoo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.793-808
    • /
    • 2014
  • The goal of this study is to evaluate and design steel plates with optimal material distributions achieved through a specific material topology optimization by using a CCARAT (Computer Aided Research Analysis Tool) as an optimizer, topologically optimally updating node densities as design variables. In typical material topology optimization, optimal topology and layouts are described by distributing element densities (from almost 0 to 1), which are arithmetic means of node densities. The average element densities are employed as material properties of each element in finite element analysis. CCARAT may deal with material topology optimization to address the mean compliance problem of structural mechanical problems. This consists of three computational steps: finite element analysis, sensitivity analysis, and optimality criteria optimizer updating node densities. The present node density based design via CCARAT using node densities as design variables removes jagged optimal layouts and checkerboard patterns, which are disadvantages of classical material topology optimization using element densities as design variables. Numerical applications that topologically optimize reinforcement material distribution of steel plates of a cantilever type are studied to verify the numerical superiority of the present node density based design via CCARAT.

Multi-domain Topology Optimization of Electromagnetic Systems (전자기 시스템 다영역 위상최적설계)

  • Wang, Se-Myung;Park, Seung-Kyu;Kang, Je-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.705-707
    • /
    • 2003
  • The design of multi-domain that considers all components of the electromagnetic systems such as air, iron, magnet, and coil is investigated using the topology optimization, interpolation method, and FEM. The design sensitivity equation for the topology optimization is derived using the adjoint variable method and the continuum approach. The proposed method is applied to the topology optimization of C-core actuator.

  • PDF

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

Multi-material topology optimization of Reissner-Mindlin plates using MITC4

  • Banh, Thien Thanh;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, a mixed-interpolated tensorial component 4 nodes method (MITC4) is treated as a numerical analysis model for topology optimization using multiple materials assigned within Reissner-Mindlin plates. Multi-material optimal topology and shape are produced as alternative plate retrofit designs to provide reasonable material assignments based on stress distributions. Element density distribution contours of mixing multiple material densities are linked to Solid Isotropic Material with Penalization (SIMP) as a design model. Mathematical formulation of multi-material topology optimization problem solving minimum compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples illustrate the reliability and accuracy of the present design method for multi-material topology optimization with Reissner-Mindlin plates using MITC4 elements and steel materials.

Topology Optimization of Connection Component System Using Density Distribution Method (밀도분포법을 이용한 부재의 연결구조 최적화)

  • 한석영;유재원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.50-56
    • /
    • 2003
  • Most engineering products contain more than one component. Failure occurs either at the connection itself or in the component at the point of attachment of the connection in many engineering structures. The allocation and design of connections such as bolts, spot-welds, adhesive etc. usually play an important role in the structure of multi-components. Topology optimization of connection component provides more practical solution in design of multi-component connection system. In this study, a topology optimization based on density distribution approach has been applied to optimal location of fasteners such as T-shape, L-shape and multi-component connection system. From the results, it was verified that the number of iteration was reduced, and the optimal topology was obtained very similarly comparing with ESO method. Therefore, it can be concluded that the density distribution method is very suitable for topology optimization of multi-component structures.

Topology and size optimization of truss structures using an improved crow search algorithm

  • Mashayekhi, Mostafa;Yousefi, Roghayeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.779-795
    • /
    • 2021
  • In the recent decades, various optimization algorithms have been considered for the optimization of structures. In this research, a new enhanced algorithm is used for the size and topology optimization of truss structures. This algorithm, which is obtained from the combination of Crow Search Algorithm (CSA) and the Cellular Automata (CA) method, is called CA-CSA method. In the first iteration of the CA-CSA method, some of the best designs of the crow's memory are first selected and then located in the cells of CA. Then, a random cell is selected from CA, and the best design is chosen from the selected cell and its neighborhood; it is considered as a "local superior design" (LSD). In the optimization process, the LSD design is used to modify the CSA method. Numerical examples show that the CA-CSA method is more effective than CSA in the size and topology optimization of the truss structures.

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

Topology Optimization of the Primary Mirror of a Multi-Spectral Camera (인공위성 카메라 주반사경의 위상최적화)

  • Park, Kang-Soo;Chang, Su-Young;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1194-1202
    • /
    • 2002
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. The optimization is carried out under self-weight and polishing pressure loading. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. As an objective function, a measure of Strehl ratio is used. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criteria method. For the light-weight primary mirror design, a three dimensional model is treated. As a preliminary example, topology optimization considering a self-weight loading is treated. In the second example, the polishing pressure is also included as a loading in the topology optimization of the mirror. Results of the optimized design topology for the mirror with various mass constraints are presented.

SOUND REDUCTION OF ROTARY COMPRESSOR USING TOPOLOGY OPTIMIZATION (위상 최적 설계를 이용한 로터리 콤프레셔의 소음 저감)

  • 왕세명;박종찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1168-1173
    • /
    • 2001
  • Compressors are the main source of noise of refrigerators and air-conditioning unit. Recent studies on the sound propagation of rotary compressors showed that the accumulator is a significant source of noise generation. This paper describes a design change of a rotary compressor for noise reduction using topology optimization. Topology optimization has been developed and used to find the most effective structural configuration in the early stage of design procedures. FE model of the rotary compressor composed of all the components is built for the topology optimization. Topology optimization results show that the empirical design for the present structure fail to constrain some resonance modes and a new component is required.

  • PDF