• Title/Summary/Keyword: Topology optimization design

Search Result 466, Processing Time 0.03 seconds

Optimum design of FRP box-girder bridges

  • Upadhyay, Akhil;Kalyanaraman, V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.539-554
    • /
    • 2010
  • Light weight superstructure is beneficial for bridges in remote areas and in emergency erection. In such weight sensitive applications, combination of fibre reinforced plastics (FRP) as material and box-girders as a structural system have great scope. This combination offers various options to tailor structure and its elements but this flexibility poses greater challenge in optimum design. In this paper a procedure is derived for a generalised optimum design of FRP box-girder bridges, using genetic algorithms (GA). The formulation of the optimum design problem in the form of objective function and constraints is presented. Size, configuration and topology optimization are done simultaneously. A few optimum design studies are carried out to check the performance of the developed procedure and to get trends in the optimum design which will be helpful to the new designers.

Optimal Design of a Multi-Layered Plate Structure Under High-Velocity Impact (다중판재의 고속충돌에 관한 최적설계)

  • Yoon, Deok-Hyun;Park, Myung-Soo;Yoo, Jeong-Hoon;Chung, Dong-Teak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1793-1799
    • /
    • 2003
  • An optimal design of a multi-layered plate structure to endure high-velocity impact has been suggested by using size optimization after numerical simulations. The NET2D, a Lagrangian explicit time-integration finite element code for analyzing high-velocity impact, was used to find the parameters for the optimization. Three different materials such as mild steel, aluminum for a multi-layered plate structure and die steel for the pellet, were assumed. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, Johnson-Cook model and Phenomenological Material Model were used as constitutive models for the simulation. It was carried out with several different gaps and thickness of layers to figure out the trend in terms of those parameters' changes under the constraint, which is against complete penetration. Also, the measuring domain has been shrunk with several elements to reduce the analyzing time. The response surface method based on the design of experiments was used as optimization algorithms. The optimized thickness of each layer in which perforation does not occur has been obtained at a constant velocity and a designated total thickness. The result is quite acceptable satisfying both the minimized deformation energy and the weight criteria. Furthermore, a conceptual idea for topology optimization was suggested for the future work.

Lightweight Design and Structural Stability of Wide Impeller for Lage-area Surface Treatment (대면적 표면처리용 광폭 임펠러의 경량 설계 및 구조적 안정성)

  • Kim, Taehyung;Jeong, Junhyeong;Cha, Joonmyung;Seok, Taehyeon;Lee, Sechang
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.18-24
    • /
    • 2020
  • In this study, a lightweight wide impeller for large-area surface treatment was designed and structural stability was confirmed based on finite element(FE) analysis. A lightweight bracket FE model was established through topology optimization, and the optimal FE model was selected after structural analysis. The bending deformation FE analysis was performed, and bending deformation was included in the allowable deformation range. In addition, FE modal analysis was performed, and the range of safe speed(RPM) by rotation was suggested. Ultimately, it was confirmed that this analytical technique is effective for design the lightweight wide impeller.

Fatigue Constrained Topological Structure Design Considering the Stress Correction Factor (응력 수정 계수를 고려한 피로 제약 조건 구조물의 위상최적설계)

  • Kim, Daehoon;Ahn, Kisoo;Jeong, Seunghwan;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • In this study, a structure satisfying the fatigue constraint is designed by applying the topology optimization based on the phase field design method. In order to predict life based on the stress value, high cycle fatigue failure theory in which stress acts within the range of elastic limit is discussed and three fatigue theories of modified-Goodman, Smith-Watson-Topper and Gerber theory are applied. To calculate the global maximum stress, a modified P-norm stress correction method is used. As a result, it is possible to obtain topology optimization results that minimize the volume while satisfying the fatigue constraints. By applying the phase field design method, a simple shape with a minimized gray scale was obtained, and the maximum stress value acting on the optimization result became very close to the allowable stress value due to the modified P-norm stress method. While previous studies does not consider the stress correction factor, this study proposes the determination method regarding the stress correction factor considering loading effects related to axial stress components.

Design and realization of hyperbolic elastic metamaterial for ultrasonic sub-wavelength resolution (탄성 초음파 회절한계 극복을 위한 하이퍼볼릭 탄성 메타물질의 설계와 구현)

  • Oh, Joo Hwan;Ahn, Young Kwan;Seung, Hong Min;Kim, Yoon Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.743-744
    • /
    • 2014
  • Hyperbolic metamaterials in which waves can only propagate through the radial direction have achieved much attention these days due to their capability of sub-wavelength resolution. In this work, the realization and optimization of hyperbolic elastic metamaterials are mainly studied. To obtain a new hyperbolic elastic metamaterial, a specially-engineered mass-spring system is introduced. Based on the mass-spring system, the hyperbolic elastic metamaterials are proposed and realized. In addition, the sub-wavelength resolution of the proposed hyperbolic elastic metamaterial is verified by ultrasonic elastic wave experiments. For the experiments, specially-designed magnetostrictive patch transducers are developed to realize two sub-wavelength elastic wave sources. Furthermore, the proposed hyperbolic elastic metamaterial is optimized to maximize its operating frequency ranges by the topology optimization method.

  • PDF

A Study on the Modular Design of Hybrid Lightweight Carbody Structures Made of Sandwich Composites and Aluminum Extrusion (샌드위치 복합재와 알루미늄 압출재를 적용한 하이브리드 경량 차체 구조물의 모듈화 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwnag-Bok;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2644-2649
    • /
    • 2011
  • The purpose of this study is to propose the modular design of hybrid lightweight carbody structures made of sandwich composites and aluminum extrusion. The sandwich composites were used for secondary structures to minimize the weight of carbody, and the aluminum extrusions were applied to primary structures to improve the stiffness of carbody and manufacturability. Key requirements were defined for the modular design of hybrid carbody, and the applied parts of sandwich composites were determined through the topology optimization analysis. Consequently, feasibility of enhancing mass saving and maintainability in modular hybrid carbody design were presented, comparing with the carbody structures made of aluminum extrusion or sandwich composites only.

  • PDF

Parametric Design of Complex Hull Forms

  • Kim Hyun-Cheol;Nowacki Horst
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.47-63
    • /
    • 2005
  • In the present study, we suggest a new method for designing complex ship hull forms with multiple domain B-spline surfaces accounting for their topological arrangement, where all subdomains are fully defined in terms of form parameters, e.g., positional, differential and integral descriptors. For the construction of complex hull forms, free-form elementary models such as forebody, afterbody and bulbs are united by Boolean operation and blending surfaces in compliance with the sectional area curve (SAC) of the whole ship. This new design process in this paper is called Sectional Area Curve-Balanced Parametric Design (SAC-BPD).

A Genetic Algorithm Approach for the Design of Minimum Cost Survivable Networks with Bounded Rings

  • B. Ombuki;M. Nakamura;Na, Z.kao;K.Onage
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.493-496
    • /
    • 2000
  • We study the problem of designing at minimum cost a two-connected network topology such that the shortest cycle to which each edge belongs does not exceed a given maximum number of hops. This problem is considered as part of network planning and arises in the design of backbone networks. We propose a genetic algorithm approach that uses a solution representation, in which the connectivity and ring constraints can be easily encoded. We also propose a crossover operator that ensures a generated solution is feasible. By doing so, the checking of constraints is avoided and no repair mechanism is required. We carry out experimental evaluations to investigate the solution representation issues and GA operators for the network design problem.

  • PDF

Material Topology Optimization of FGMs using Homogenization and Linear Interpolation Methods (균질화 및 선형보간법을 이용한 기능경사 내열복합재의 물성분포 최적설계)

  • 조진래;박형종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2001
  • In a functionally graded materials(FGM), two constituent material particles are mixed up according to a specific volume fraction distribution so that its thermoelastic behavior is definitely characterized by such a material composition distribution. Therefore, the designer should determine the most suitable volume fraction distribution in order to design a FGM that optimally meets the desired performance against the given constraints. In this paper, we address a numerical optimization procedure, with employing interior penalty function method(IPFM) and FDM, for optimizing 2D volume fractions of heat-resisting FGMs composed of metal and ceramic. We discretize a FGM domain into finite number of homogenized rectangular cells of single design variable in order for the optimization efficiency. However, after the optimization process, we interpolate the discontinuous volume fraction with globally continuous bilinear function in order to enforce the continuity of volume fraction distributions.

  • PDF

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.