• Title/Summary/Keyword: Topological analysis

Search Result 289, Processing Time 0.03 seconds

Landscape Information Visualization of Landscape Potential Index in Hilly Openspace Conservation of Urban Fringe Area (도시주변 녹지경관의 보전.관리에 있어 경관잠재력 지표의 경관정보화와 가시화 연구)

  • Cho, Tong-Buhm
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.37-48
    • /
    • 2001
  • The purpose of this study is to suggest the landscape potential index for visualizing landscape information in the conservation of hilly landscape in urban fringe. For the visual and quantitative approach to topological landscape assessment, numerical entity data of DEM(digital elevation model) were processed with CAD-based utilities that we developed and were mainly focused on analysis of visibility and visual sensitivity. Some results, with reference in assessing greenbelt area of Eodeung Mt. in Gwangju, proved to be considerable in the landscape assessment of suburban hilly landscapes. 1) Since the viewpoints and viewpoint fields were critical to landscape structure, randomized 194 points(spatially 500m interval) were applied to assessing the generalized visual sensitivity, we called. Because there were similar patterns of distribution comparing to those by 56 points and 18 Points given appropriately, it could be more efficient by a few viewpoints which located widely. 2) Regressional function was derived to represent the relationships between probabilities of visibility frequency and the topological factors(topological dominance, landform complexity and relational aspect) of target field. 3) Visibility scores of each viewpoint were be calculated by summing the visual sensitivity indices within a scene. The scores to the upper part including ridge line have been more representative to overall distributions of visual sensitivities. Also, with sum of deviations of sensitivity indices from each single point's specific index to the weighting values of view points could be estimated rotationally. 4) The deviational distributions of visual sensitivity classes in the topological unit of target field were proved to represent the visual vulnerability of the landform. 5) Landscape potential indices combined with the visual sensitivity and the DGN(degree of green naturality) were proposed as visualized landscape information distributed by topological unit.

  • PDF

OQL/Geo : An object- oriented spatial query language for Geographic Information Systems (OQL/Geo : 지리 정보 시스템을 위한 객체지향 공간 질의어)

  • 김양희;김명선;권석형;정창성
    • Spatial Information Research
    • /
    • v.3 no.2
    • /
    • pp.191-204
    • /
    • 1995
  • The data model is a system model which abstracts the spatial and nonspatial fea¬tures of the real world. A system defines through its data model a framework for the inner rep¬resentation of and connections with the outside world. The spatial query language is one of the most efficent framework for defining connection with outside world in the GIS. Existing GIS uses a spatial data model based on relational data model. Therefore, it has some difficulties in data abstraction and representing complex objects through inheritance. In this paper, we pro-pose an object oriented data model-Topological Object Model(TOM). TOM combines object model in ODMG and the planer topological object. Based on this model, we present an object-oriented spatial query language-OQL/Geo. OQL/Geo extends OQL in ODMG and represents TOM effectively. It also provides several operators such as geometric, topological and visible ope-rators. Moreover, it represents with diverse flexivility the request for complex spatial analysis and presentation of query results.

  • PDF

Level Set based Shape Optimization Using Extended B-spline Bases (확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.

Finding Isolated Zones through Connectivity Relationship Analysis in Indoor Space (실내공간의 연결성 분석을 통한 고립지역 탐색)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.229-240
    • /
    • 2012
  • In Korea, u-City has been constructed as IT-based new city with introduction of the ubiquitous concept. However, most currently provided u-services are just monitoring services based on the USN(Ubiquitous Sensor Network) technology, so spatial analysis is insufficient. Especially, buildings have been rapidly constructed and expanded in multi-levels, and people spend a lot of time in indoor space, so indoor spatial analysis is necessary. Therefore, connectivity relationship in indoor space is analyzed using the topological data model. Topological relationships could be redefined due to the dynamic changes of environment in indoor space, and changes could have an effect on analysis results. In this paper, the algorithms of finding isolated zones is developed by analyzing connectivity relationship between space objects in built-environments after changes of environment in indoor space due to specific situation such as fire. And the system that visualizes isolated zones as well as three-dimensional data structure of indoor space is developed to get the analysis result by using the analysis algorithms.

Analysis of Topological Invariants of Manifold Embedding for Waveform Signals (파형 신호에 대한 다양체 임베딩의 위상학적 불변항의 분석)

  • Hahn, Hee-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.291-299
    • /
    • 2016
  • This paper raises a question of whether a simple periodic phenomenon is associated with the topology and provides the convincing answers to it. A variety of music instrumental sound signals are used to prove our assertion, which are embedded in Euclidean space to analyze their topologies by computing the homology groups. A commute time embedding is employed to transform segments of waveforms into the corresponding geometries, which is implemented by organizing patches according to the graph-based metric. It is shown that commute time embedding generates the intrinsic topological complexities although their geometries are varied according to the spectrums of the signals. This paper employs a persistent homology to determine the topological invariants of the simplicial complexes constructed by randomly sampling the commute time embedding of the waveforms, and discusses their applications.

Level Set Based Shape Optimization of Linear Structures using Topological Derivatives (위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Kim, Min-Geun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The "Hamilton-Jacobi(H-J)" equation and computationally robust numerical technique of "up-wind scheme" lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes are not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

Electromagnatic Effect Analysis inside Electrically Large Structures Using Topological Modeling and PWB Method (위상학적 모델링과 PWB Method를 이용한 대형 구조물 내부의 전자파 영향 해석)

  • Lee, Jae-Min;Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.284-290
    • /
    • 2016
  • As the recently advanced scientific developments result in high lever of the usability and the needs for the electrical equipment and devices in various situations, the safety technologies protecting malfunction and electrical critical damages including soft and hardware from the unexpectedly radiated electromagnetic interferences are required gradually. In addition, the numerical analysis for the miniaturized electrical components and equipments as well as the conventional electrical devices installed inside the electrically large enclosures and structures requires the memory requirement and time consumption too big to be handled in a realistic situation, which will result in a limitation in solving the complete set of maxwell's equations. In this paper, PWB method based on statistical theory and topological modeling with appropriate zoning concepts are introduced for the EM analysis of an electrically large complex structures.

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

Frequency Response Analysis on PCB in Dual Resonant Cavity by Using Stochastical and Topological Modeling (확률론과 위상학적 모델링을 이용한 이중 공진구조 내의 PCB 주파수 응답해석)

  • Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.919-929
    • /
    • 2014
  • In recent, the requirements for the safety to the effects of high power electromagnetic wave have been increased along with the development of electricity and electronic equipments. The small sized electronic devices and the various components have been analyzed by using the full-EM simulation and solving a complete set of Maxwell equation. However, the deterministic approach has a drawback and much limitation in the electromagnetic analysis of an electrically large cavity with a high complexity of the structure. In this paper, statistical theory and topological modeling method are combined to analyze the large cavity with a complex structure. In particular, the PWB(Power Balance) method and BLT(Baum-Liu-Tesche) equation are combined and employed to solve the frequency response to the large-scaled cavity with remarkably reduced time-consumption. For instance, a PCB substrate inside box of box are considered as a large structure with a complexity.