• 제목/요약/키워드: Topological Model

검색결과 245건 처리시간 0.025초

Bridge-edges Mining in Complex Power Optical Cable Network based on Minimum Connected Chain Attenuation Topological Potential

  • Jiang, Wanchang;Liu, Yanhui;Wang, Shengda;Guo, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.1030-1050
    • /
    • 2021
  • The edges with "bridge characteristic" play the role of connecting the communication between regions in power optical cable network. To solve the problem of mining edges with "bridge characteristic" in provincial power optical cable network, the complex power optical cable network model is constructed. Firstly, to measure the generated potential energy of all nodes in n-level neighborhood local structure for one edge, the n-level neighborhood local structure topological potential is designed. And the minimum connected chain attenuation is designed to measure the attenuation degree caused by substituted edges. On the basis of that, the minimum connected chain attenuation topological potential based measurement is designed. By using the designed measurement, a bridge-edges mining algorithm is proposed to mine edges with "bridge characteristic". The experiments are conducted on the physical topology of the power optical cable network in Jilin Province. Compared with that of other three typical methods, the network efficiency and connectivity of the proposed method are decreased by 3.58% and 28.79% on average respectively. And the proposed method can not only mine optical cable connection with typical "bridge characteristic" but also can mine optical cables without obvious characteristics of city or voltage, but it have "bridge characteristic" in the topology structure.

도시주변 녹지경관의 보전.관리에 있어 경관잠재력 지표의 경관정보화와 가시화 연구 (Landscape Information Visualization of Landscape Potential Index in Hilly Openspace Conservation of Urban Fringe Area)

  • 조동범
    • 농촌계획
    • /
    • 제7권1호
    • /
    • pp.37-48
    • /
    • 2001
  • The purpose of this study is to suggest the landscape potential index for visualizing landscape information in the conservation of hilly landscape in urban fringe. For the visual and quantitative approach to topological landscape assessment, numerical entity data of DEM(digital elevation model) were processed with CAD-based utilities that we developed and were mainly focused on analysis of visibility and visual sensitivity. Some results, with reference in assessing greenbelt area of Eodeung Mt. in Gwangju, proved to be considerable in the landscape assessment of suburban hilly landscapes. 1) Since the viewpoints and viewpoint fields were critical to landscape structure, randomized 194 points(spatially 500m interval) were applied to assessing the generalized visual sensitivity, we called. Because there were similar patterns of distribution comparing to those by 56 points and 18 Points given appropriately, it could be more efficient by a few viewpoints which located widely. 2) Regressional function was derived to represent the relationships between probabilities of visibility frequency and the topological factors(topological dominance, landform complexity and relational aspect) of target field. 3) Visibility scores of each viewpoint were be calculated by summing the visual sensitivity indices within a scene. The scores to the upper part including ridge line have been more representative to overall distributions of visual sensitivities. Also, with sum of deviations of sensitivity indices from each single point's specific index to the weighting values of view points could be estimated rotationally. 4) The deviational distributions of visual sensitivity classes in the topological unit of target field were proved to represent the visual vulnerability of the landform. 5) Landscape potential indices combined with the visual sensitivity and the DGN(degree of green naturality) were proposed as visualized landscape information distributed by topological unit.

  • PDF

Topological Analysis on the Degree of Complexation and Viscosity of Polymer Complexes

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1046-1056
    • /
    • 1995
  • A topological theory has been introduced to evaluate the degree of complexation and the viscosity of polymer complexes by extending the theory of Iliopoulos and Audebert for aqueous polymer solutions. The previous theory of Iliopoulos and Audebert has offered only a semiquantitative theoretical model for polymer complex systems, whereas our present work gives a general theoretical model applicable to all the polymer complex systems. Their theories considered only the physical property term caused by the displacement of complexed points between polymer solute chains, while our theory deals with all the physical effects, caused by the displacement of complexed points entangled points in polymer solute chains. There have been predicted the characteristics of physical properties from the expression. It is exposed that the predictive values show good agreement with the experimental data for polymer complexes.

Topological Analysis on the Dispersion Polymerization of Styrene in Ethanol

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권3호
    • /
    • pp.245-253
    • /
    • 1996
  • A topological theory has been introduced to explain and evaluate the fractional volumes of system materials, the change of the weight and concentration of monomer molecules, molecular weight distribution, and interaction functions of polymer-polymer and polymer-oligomer, etc. for dispersion polymerization. The previous theory of Lu et al. has offered only an incomplete simulation model for dispersion polymer systems, whereas our present one gives a general theoretical model applicable to all the polymerization systems. The theory of Lu et al. considered only the physical property term caused by interaction between matters of low molecular weight (i.e., diluent, monomer, and oligomer) and polymer particles without dealing with physical properties caused by the structure of polymer networks in polymer particles, while our theory deals with all physical effect possible, caused by the displacement of not only entangled points but also junction points in polymer particles. The theoretically predictive values show good agreement with the experimental data for dispersion polymerization systems.

2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구 (Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models)

  • 안승섭;정도준;이상일;김위석
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.

A Conceptual Data Model for a 3D Cadastre in Korea

  • Lee, Ji-Yeong;Koh, June-Hwan
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.565-574
    • /
    • 2007
  • Because of most current cadastral systems maintain 2D geometric descriptions of parcels linked to administrative records, the system may not reflect current tendency to use space above and under the surface. The land has been used in multi-levels, e.g. constructions of multi-used complex buildings, subways and infrastructure above/under the ground. This cadastre situation of multilevel use of lands cannot be defined as cadastre objects (2D parcel-based) in the cadastre systems. This trend has requested a new system in which right to land is clearly and indisputably recorded because a right of ownership on a parcel relates to a space in 3D, not any more relates to 2D surface area. Therefore, this article proposes a 3D spatial data model to represent geometrical and topological data of 3D (property) situation on multilevel uses of lands in 3D cadastre systems, and a conceptual 3D cadastral model in Korea to design a conceptual schema for a 3D cadastre. Lastly, this paper presents the results of an experimental implementation of the 3D Cadastre to perform topological analyses based on 3D Network Data Model to identify spatial neighbors.

GSIS를 이용한 수문모형 입력매개변수 추출에 관한 연구 (A Study on the extraction of hydrologic-Model input parameter using GSIS)

  • 이근상;채효석;박정남;조기성
    • 대한공간정보학회지
    • /
    • 제8권2호
    • /
    • pp.11-22
    • /
    • 2000
  • 수자원의 효율적인 관리를 위해서는 유역에 대한 정확한 지형특성 및 수문매개변수를 추출해야 한다. 하지만, 아직까지 수문분야에서 이와 관련된 자료들이 수작업이나 간단한 연산에 의해 처리되고 있는 실정이다. 본 연구에서는 GSIS를 활용하여 유역에 대한 지형특성 및 수문관련 매개변수를 추출할 수 있는 알고리즘을 제시함으로서 자료처리 시간의 절감 및 수문자료에 대한 신뢰성을 높일 수 있었다. 그리고, 추출한 매개변수를 HEC-HMS 수문모형의 입력매개변수로 활용함으로서 GSIS와 수문모형과의 연계방향을 제시하였다. 유역별 지형특성 및 수문관련 매개변수추출 과정은, 먼저 DEM자료로부터 유역 및 하천을 추출하였고, 토지피복도과 토양도를 중첩하여 유출곡선번호(CN)을 추출하였다. 또한 유역과 하천에 격자 연산을 수행하여 최장수로 길이 및 경사와 같은 지형 매개변수를 추출하였다. 그리고 추출한 지형 매개변수와 평균 곡선번호와의 연산과정을 통해 Muskingum K와 소유역 지체시간과 같은 수문관련 매개변수를 추출할 수 있는 기법을 제시하였다.

  • PDF

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

비다양체 형상 모델링을 위한 간결한 경계 표현 및 확장된 오일러 작업자 (Compact Boundary Representation and Generalized Eular Operators for Non-manifold Geometric Modeling)

  • 이상헌;이건우
    • 한국CDE학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-19
    • /
    • 1996
  • Non-manifold topological representations can provide a single unified representation for mixed dimensional models or cellular models and thus have a great potential to be applied in many application areas. Various boundary representations for non-manifold topology have been proposed in recent years. These representations are mainly interested in describing the sufficient adjacency relationships and too redundant as a result. A model stored in these representations occupies too much storage space and is hard to be manipulated. In this paper, we proposed a compact hierarchical non-manifold boundary representation that is extended from the half-edge data structure for solid models by introducing the partial topological entities to represent some non-manifold conditions around a vertex, edge or face. This representation allows to reduce the redundancy of the existing schemes while full topological adjacencies are still derived without the loss of efficiency. To verify the statement above, the storage size requirement of the representation is compared with other existing representations and present some main procedures for querying and traversing the representation. We have also implemented a set of the generalized Euler operators that satisfy the Euler-Poincare formula for non-manifold geometric models.

  • PDF

Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data

  • Claridades, Alexis Richard;Lee, Jiyeong;Blanco, Ariel
    • 한국측량학회지
    • /
    • 제36권5호
    • /
    • pp.319-333
    • /
    • 2018
  • As human beings spend more time indoors, and with the growing complexity of indoor spaces, more focus is given to indoor spatial applications and services. 3D topological networks are used for various spatial applications that involve navigation indoors such as emergency evacuation, indoor positioning, and visualization. Manually generating indoor network data is impractical and prone to errors, yet current methods in automation need expensive sensors or datasets that are difficult and expensive to obtain and process. In this research, a methodology for semi-automatically generating a 3D indoor topological model based on IndoorGML (Indoor Geographic Markup Language) is proposed. The concept of Shooting Point is defined to accommodate the usage of omnidirectional images in generating IndoorGML data. Omnidirectional images were captured at selected Shooting Points in the building using a fisheye camera lens and rotator and indoor spaces are then identified using image processing implemented in Python. Relative positions of spaces obtained from CAD (Computer-Assisted Drawing) were used to generate 3D node-relation graphs representing adjacency, connectivity, and accessibility in the study area. Subspacing is performed to more accurately depict large indoor spaces and actual pedestrian movement. Since the images provide very realistic visualization, the topological relationships were used to link them to produce an indoor virtual tour.