• Title/Summary/Keyword: Topographical Parameters

Search Result 68, Processing Time 0.021 seconds

An Analysis for Goodness of Fit on Trigger Runoff of Flash Flood and Topographic Parameters Using GIS (GIS를 이용한 돌발홍수의 한계유량과 유역특성인자의 적합도 분석)

  • Oh, Myung-Jin;Yang, In-Tae;Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.87-95
    • /
    • 2006
  • Recently, local heavy rain for a short term is caused by unusual changing in the weather. This phenomenon has, several times, caused an extensive flash flood, casualties, and material damage. This study is aimed at calculating the characteristics of flash floods in streams. For this purpose, the analysis of topographical characteristics of water basin through applying GIS techniques will be conducted. The flash flood prediction model we used is made with GCIUH (geomorphoclimatic instantaneous unit hydrograph). The database is established by the use of GIS and by the extraction of streams and watersheds from DEM. The streams studied are included small, middle and large scale watersheds. For the first, for the establishment or criteria on the flash flood warning, peak discharge and trigger runoff must be decided. This study analyzed the degree or aptitude of topographical factors to the trigger runoff calculated by GCUH model.

  • PDF

A Study on the Effect of Grid Size to Extract Topographical Parameters by DEM (DEM에 의한 지형인자 추출에 따른 격자크기의 영향에 관한 연구)

  • Jeong, In-Ju;Lee, Jung-Min;Kim, Sang-Yong;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.67-75
    • /
    • 2002
  • Recently, GIS tend to be studied in water resoruces field. In hydrology analysis, GIS propose way that can develop subjective element of designer objectively. The development project is conducting disaster effect estimation to breed disaster, and cope these disaster beforehand provoking soil erosion and food recently. In this study, receive value of LS factor through DEM data at volume of soil erosion computation by disaster effect estimation and whether it are some relation effect of gradient and change of soil erosion by grid size did comparative analysis. As a result, according as grid size great, gradient became slow and could know that error value of gradient great according as storing scale of digital topographical map grows.

  • PDF

A Study of Design Flood Discharge Characteristics by Topographical Parameters (지형학적 인자에 따른 설계홍수량 특성에 관한 연구)

  • Park, Ki-Bum;Kim, Gyo-Sik;Hwang, Sung-Hwan;Cha, Sang-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1182-1186
    • /
    • 2006
  • The decision of design flood in river basins is very important in the aspect of flood control. The design flood of rivers was estimated according to the size and importance of basins. As the damage of floods increases more and more and the importance of defense against floods increases further, the presumption of design flood can be very important. Especially, what influences most greatly flood is rainfall. However, in spite of equal rainfall, the estimated flood differ according to the features of basins. The fact that the features of basins influence greatly the estimation of flood was confirmed by the preceding research results and experiences. However, although many rivers have their own basin features, the research on how these basin features are related to the estimation of design flood, is not yet sufficient. The purpose of this study is to identify how the design flood estimated previously by river arrangement basic plan is correlated with topography factors, and so investigate the correlation between basin topography factors and design flood in order to provide the additional information for the unmeasured basins or the middle/small river basins where their river plan is not established.

  • PDF

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

Method of Predicting Path Loss and Base Station Topography Classification using Artificial Intelligent in Mobile Communication Systems (이동통신 시스템에서 인공지능을 이용한 경로 손실 예측 및 기지국 지형 구분 방법)

  • Kim, Jaejeong;Lee, Heejun;Ji, Seunghwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.703-713
    • /
    • 2022
  • Accurate and rapid establishment of mobile communication is important in mobile communication system. Currently, the base station parameters to establish a network are determined by cell planning tool. However, it is necessary to perform new cell planning for each new installation of the base station, and there may be a problem that parameters are not suitable for the actual environment are set, such as obstacle information that is not applied in the cell planning tool. In this paper, we proposed methods for path loss prediction using DNN and topographical division using CNN in SON server. After topography classification, a SON server configures the base station parameters according to topography, and update parameters for each topography. The proposed methods can configure the base station parameters automatically that are considered topography information and environmental changes.

Modeling the Natural Occurrence of Selected Dipterocarp Genera in Sarawak, Borneo

  • Teo, Stephen;Phua, Mui-How
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.3
    • /
    • pp.170-178
    • /
    • 2012
  • Dipterocarps or Dipterocarpaceae is a commercially important timber producing and dominant keystone tree family in the rain forests of Borneo. Borneo's landscape is changing at an unprecedented rate in recent years which affects this important biodiversity. This paper attempts to model the natural occurrence (distribution including those areas with natural forests before being converted to other land uses as opposed to current distribution) of dipterocarp species in Sarawak which is important for forest biodiversity conservation and management. Local modeling method of Inverse Distance Weighting was compared with commonly used statistical method (Binary Logistic Regression) to build the best natural distribution models for three genera (12 species) of dipterocarps. Database of species occurrence data and pseudoabsence data were constructed and divided into two halves for model building and validation. For logistic regression modeling, climatic, topographical and edaphic parameters were used. Proxy variables were used to represent the parameters which were highly (p>0.75) correlated to avoid over-fitting. The results show that Inverse Distance Weighting produced the best and consistent prediction with an average accuracy of over 80%. This study demonstrates that local interpolation method can be used for the modeling of natural distribution of dipterocarp species. The Inverse Distance Weighted was proven a better method and the possible reasons are discussed.

Runoff Hydrological Analysis in Soyanggang-dam watershed using SLURP Model (SLURP 모형을 이용한 유출수문분석 - 소양강댐 유역을 대상으로 -)

  • Lim, Hyuk Jin;Shin, Hyung Jin;Kwon, Hyung Joong;Jang, Cheol Hee;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1142-1146
    • /
    • 2004
  • The objective of this study is to the test applicability of SLURP on Soyanggang-dam watershed. The area of this watershed is $2,694km^2$ and mean elevation and slope is 650 m and $23^{\circ}$ respectively. Topographical parameters were derived from DEM using TOPAZ and SLURPAZ. NDVI was calculated from multi-temporal NOAA/AVHRR images. The daily meteorological data and hydrograph during $1999\~2001$ were selected for model calibration and performance tests. Weather elements (dew-point temperature, solar radiation, maximum and minimum temperature, relative humidity) were required from the S meteorological stations near the study area. The model parameters of each land cover class were optimized by sensitivity analysis and SCE-UA method. Runoff rate shows $49.33\%\~64.06\%$. Simulated results during 4 years were estimated by Nash-Sutcliffe efficiency and WMO volume error. Nash-Sutcliffe efficiency shows $0.61\~0.75$ and WMO volume error shows $6.1\%-18.8\%$.

  • PDF

Generation of Simulated Geospatial Images from Global Elevation Model and SPOT Ortho-Image

  • Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • With precise sensor position, attitude element, and imaging resolution, a simulated geospatial image can be generated. In this study, a satellite image is simulated using SPOT ortho-image and global elevation data, and the geometric similarity between original and simulated images is analyzed. Using a SPOT panchromatic image and high-density elevation data from a 1/5K digital topographic map data an ortho-image with 10-meter resolution was produced. The simulated image was then generated by exterior orientation parameters and global elevation data (SRTM1, GDEM2). Experimental results showed that (1) the agreement of the image simulation between pixel location from the SRTM1/GDEM2 and high-resolution elevation data is above 99% within one pixel; (2) SRTM1 is closer than GDEM2 to high-resolution elevation data; (3) the location of error occurrence is caused by the elevation difference of topographical objects between high-density elevation data generated from the Digital Terrain Model (DTM) and Digital Surface Model (DSM)-based global elevation data. Error occurrences were typically found at river boundaries, in urban areas, and in forests. In conclusion, this study showed that global elevation data are of practical use in generating simulated images with 10-meter resolution.

A Study on Extraction of the Topographical Parameters Using HEC-GEOHMS and DEM (HEC-GEOHMS와 DEM을 이용한 지형인자 추출에 관한 연구)

  • Lee, Jung-Min;Jeong, In-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.39-44
    • /
    • 2003
  • Recently, GIS has been increasing its applicability in water resource field. The GIS based modeling process can generally be used for extracting channel network and watershed delineation. Through the overlay analysis, the extracted channel network can be overlayed with topographic and landuse maps to generate the input files for running a hydrologic model. This lead to consider GIS as a tool which can include subjective factors of the model designers in hydrologic analysis. Therefore, this study has compared GIS based HEC-GEOHMS with the classical approach. In general, both approaches have similar results, however, HEC-GROHMS has showed some errors. Based on the results, a GIS based approach could be more effective method with better credibility to obtain input parameters from topographic information as subsequent efforts were made to lessen the errors.

  • PDF