• Title/Summary/Keyword: Topographic Characteristics

Search Result 388, Processing Time 0.023 seconds

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.

A Study on Transportation Characteristics of Debris dependent on Geologic Conditions (지질조건에 따른 사태물질 이동특성 고찰)

  • Chae Byung-Gon;Kim Won-Young;Lee Choon-Oh;Kim Kyeong-Su;Cho Yong-Chan;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.185-199
    • /
    • 2005
  • Properties of sliding materials are dependent on the lithology because debris is the product of rock weathering processes. In order to characterize transportation behavior of debris dependent of debris types, this study selected 26 debris flows over three areas composed with different rock weathering types and topographic conditions. Analyses of lithology, weathering, and topographic characteristics were performed by detailed field survey. Based on the field survey data, transportation behavior of debris was studied at the aspect of the relationship of grain size and volume of debris as well as topographic conditions. According to the study results, change of slope angle is very influential factor on runout distance of debris among the topographic factors. Because the sliding velocity and the energy of debris are frequently changed and more irregular on an undulating slope, the unout distance of debris is larger than that of an uniformly dipping slope. Runout distance of debris is also influenced by volume and grain size of debris. Volume of debris in the gabbro is four or five times larger than that of the granite area because it is controlled by the lithology. Considered with grain size distribution, runout distance of debris is longer in the gabbro area which is composed with irregular grain size bearing large corestones than that in the medium grained granite area.

Simulation of the Debris Flow Diffusion in the Mountainous Watershed Using 3D Terrain Data (3D 지형데이터를 활용한 산지유역 토석류 흐름 모의에 관한 연구)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • This study selected the national park area of Mt. Seorak in Inje-gun, Gangwon-do, where a lot of debris flow occurred due to the heavy rainfall and conducted a field survey. In addition, topographic spatial data were constructed using the GIS technique to analyze watershed characteristics. For the construction of terrain data after the disaster, the debris flow occurrence section was scanned and the 3D topographic data was constructed using the terrestrial LiDAR. LiDAR terrain data are compared to digital maps(before disaster) to assess precision and topographic data before and after the disaster were compared and analyzed. Debris flow diffusion area was calculated using FLO-2D model and compared debris flow occurred section.

Topographic Analysis of Landslides in Umyeonsan (우면산 산사태 발생 지점의 지형분석)

  • Ko, Suk Min;Lee, Seung Woo;Yune, Chan-Young;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • In this study, we investigated the landslides area which occurred in Umyeonsan in 2011 and collected landslide location data. Using this field data with aerial photos and LiDAR data which is obtained before and after disaster event, we analyzed the landslide occurrence frequency per unit area about various topographic characteristics. In case of slope, we compared two kind of slopes which are calculated with Neighborhood algorithm and maximum slope algorithm. Also we used aspect, elevation, profile curvature and planform curvature in topographic analysis of landslide occurrence locations. As a result, the region of which maximum slope is $40^{\circ}-45^{\circ}$ is relatively hazardous in landslide. If the perpendicular surface to the direction of the maximum slope is concave, it is more hazardous than other case.

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

3D Modeling based on Digital Topographic Map for Risk Analysis of Crowd Concentration and Selection of High-risk Walking Routes (군중 밀집 위험도 분석과 고위험 보행로 선정을 위한 수치지형도 기반 3D 모델링)

  • Jae Min Lee;Imgyu Kim;Sang Yong Park;Hyuncheol Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.87-95
    • /
    • 2023
  • On October 29, 2022, a very large number of people gathered in Itaewondong, Yongsan-gu, Seoul, Korea for a Halloween festival, and as crowds pushed through narrow alleys, 159 deaths and 195 injuries occurred, making it the largest crushing incident in Korea. There have been a number of stampede deaths where crowds gathered at large-scale festivals, event venues, and stadiums, both at home and abroad. When the density increases, the physical contact between bodies becomes very strong, and crowd turbulence occurs when the force of the crowd is suddenly added from one body to another; thus, the force is amplified and causes the crowd to behave like a mass of fluid. When crowd turbulence occurs, people cannot control themselves and are pushed into he crowd. To prevent a stampede accident, investigation and management of areas expected to be crowded and congested must be systematically conducted, and related ministries and local governments are planning to establish a crowd management system to prepare safety management measures to prevent accidents involving multiple crowds. In this study, based on national data, a continuous digital topographic map is modeled in 3D to analyze the risk of crowding and present a plan for selecting high-risk walking routes. Areas with a high risk of crowding are selected in advance based on various data (numerical data, floating population, and regional data) in a realistic and feasible way, and the analysis is based on the visible results from 3D modeling of the risk area. The study demonstrates that it is possible to prepare measures to prevent cluster accidents that can reflect the characteristics of the region.

Analysis of Landslide in Inje Region Using Aerial Photograph and GIS (항공사진과 GIS를 이용한 인제지역 산사태 분석)

  • Son, Jung-Woo;Kim, Kyung-Tak;Lee, Chang-Hun;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.61-69
    • /
    • 2009
  • In mid-July, 2006 the torrential rainfall across Gangwon-do region caused 48 casualties and 1,248 houses submerged, resulting in damages with the restoration costs of 3 trillion and 512.5 billion won. This was because the topographic characteristics of Gangwon-do region for which mountainous areas mostly account increased the effects of landslide. In this study, the landslide region was shot using the PKNU No.4 system immediately after the occurrence of landslide in order to analyze it as objectively, exactly, and rapidly as possible. 1,054 areas with landslide occurrence were extracted by digitizing the shot images through visual reading after orthometric correction using ERDAS 9.1. Using the Arc GIS 9.2, a GIS program, hydrologic, topographic, clinical, geologic, pedologic aspects and characteristics of the landslide region were established in database through overlay analysis of digital map, vegetation map, geologic map, and soil map, and the status and characteristics of the occurrence of the landslide were analyzed.

  • PDF

GIS Based Analysis of Landslide Effecting Factors in the Pyeongchang Area

  • Kim, Gihong;Won, Sangyeon;Kim, Dongmin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • Most areas in Gangwon-do are mountainous regions where causes heavy damages due to landslides. It is important to analyze basic factors influencing the cause of landslides in order to prevent such landslides. For this study, a landslide occurring site is extracted from aerial images taken after the landslide caused by typhoon 'Ewiniar' in Pyeongchang area 2006. Also, the overlay analysis with the topographic, forest, and soil maps in this area is performed using GIS based methods. In addition, the topographic, forest, and soil characteristics relating to the landslide factors are analyzed. As a result, large numbers of landslides occurred at a slope angle of $20^{\circ}-40^{\circ}$. In the case of the forest factors, there are close relationships between the artificial pine and larch forests and the frequency of landslides. The low forest density represents a weakness in landslides. In the case of the soil factors, a higher level in the surface soil with a type of sandy loam soil, a higher gravel content in subsoil, and a higher degree of acid rocks in soil parent materials cause higher frequencies in landslides.

The effects of topography on local wind-induced pressures of a medium-rise building

  • Hitchcock, P.A.;Kwok, K.C.S.;Wong, K.S.;Shum, K.M.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.433-449
    • /
    • 2010
  • Wind tunnel model tests were conducted for a residential apartment block located within the complex terrain of The Hong Kong University of Science and Technology (HKUST). The test building is typical of medium-rise residential buildings in Hong Kong. The model study was conducted using modelling techniques and assumptions that are commonly used to predict design wind loads and pressures for buildings sited in regions of significant topography. Results for the building model with and without the surrounding topography were compared to investigate the effects of far-field and near-field topography on wind characteristics at the test building site and wind-induced external pressure coefficients at key locations on the building facade. The study also compared the wind tunnel test results to topographic multipliers and external pressure coefficients determined from nine international design standards. Differences between the external pressure coefficients stipulated in the various standards will be exacerbated when they are combined with the respective topographic multipliers.

Fusion of DEMs Generated from Optical and SAR Sensor

  • Jin, Kveong-Hyeok;Yeu, Yeon;Hong, Jae-Min;Yoon, Chang-Rak;Yeu, Bock-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.53-65
    • /
    • 2002
  • The most widespread techniques for DEM generation are stereoscopy for optical sensor images and SAR interferometry(InSAR) for SAR images. These techniques suffer from certain sensor and processing limitations, which can be overcome by the synergetic use of both sensors and DEMs respectively. This study is associated with improvements of accuracy with consistency of image's characteristics between two different DEMs coming from stereoscopy for the optical images and interferometry for SAR images. The MWD(Multiresolution Wavelet Decomposition) and HPF(High-Pass Filtering), which take advantage of the complementary properties of SAR and stereo optical DEMs, will be applied for the fusion process. DEM fusion is tested with two sets of SPOT and ERS-l/-2 satellite imagery and for the analysis of results, DEM generated from digital topographic map(1 to 5000) is used. As a result of an integration of DEMs, it can more clearly portray topographic slopes and tilts when applying the strengths of DEM of SAR image to DEM of an optical satellite image and in the case of HPF, the resulting DEM.

  • PDF