• Title/Summary/Keyword: Topographic Analysis

Search Result 695, Processing Time 0.032 seconds

Analysis of the Direct Runoff by Using the Geomorpologic Parameters of Watersheds (유역(流域)의 지상인자(地上因子)를 이용(利用)한 홍수량(洪水量) 해석(解析))

  • Suh, Seung Duk;Lee, Seung Yook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.55-66
    • /
    • 1989
  • The purpose of this study is to estimate the flood discharge and peak time by the SCS method and the probability method using the geomorpologic parameters obtained from the topographic maps following the law of stream classifying and, ordering by Horton and Strahler. The SCS method and the probability method are used in estimating the times to peak and the flood discharges at An-dong, Im-ha, and Sun-san basins in the Nakdong River system. The results obtained are as follows : 1. The range of the values of the area ratio, the bifurcation ratio and the length ratio agree with those of natural streams presented by Horton and Strahler. 2. Comparisons of the probability method and observed values show that small relative errors of 0-7% of flood discharge, and 0-2hr, difference in time to peak respectivly. But the SCS method shows that large relative errors of 10-40% of flood discharge, and 0-4hr, difference in time to peak. 3. When the rainfall intensity is large, the error of flood discharge estimated by using the probability method is relativly small.

  • PDF

Comparison of Observation Performance of Urban Displacement Using ALOS-1 L-band PALSAR and COSMO-SkyMed X-band SAR Time Series Images (ALOS-1 L-band PALSAR와 COSMO-SkyMed X-band SAR 시계열 영상을 이용한 도심지 변위관측 성능 비교 분석)

  • Choi, Jung-Hyun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.283-293
    • /
    • 2018
  • We applied PSInSAR to two SAR satellite (ALOS-1 and COSMO-SkyMed) images and analyzed the difference in displacement observation performance according to sensor characteristics. The building layer was extracted from the digital topographic map, and the PS extracted from the SAR image was classified into two groups(building structure and ground surface) for density analysis. The density of PS extracted from the research area was $0.023point/m^2$ for ALOS-1 PALSAR and $0.1point/m^2$ for COSMO-SkyMed, more than 4 times PS was extracted compared to ALOS-1. In addition, not only the PS density in the building, but also the density in the ground were greatly increased. The average displacement velocity of ALOS-1 PALSAR is within ${\pm}1cm/yr$, while for COSMO-SkyMed it is within ${\pm}0.3cm/yr$. Although it is difficult to make quantitative comparisons because it does not use the data for the same period, it can be said that the accuracy of X-band SAR system is very high compared to the L-band. In consideration of PS observation density and observation accuracy of displacement, X-band SAR data is very effective in research where it is important to acquire useful signals from the ground surface, such as ground subsidence and sinkhole.

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

Evaluation of Parameter Characteristics of the Storage Function Model Using the Kinematic Wave Model (운동파모형을 이용한 저류함수법 매개변수의 특성 평가)

  • Choi, Jong-Nam;Ahn, Won-Shik;Kim, Hung-Soo;Park, Min-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.95-104
    • /
    • 2010
  • The storage function model is one of the most commonly used models for flood forecasting and warning system in Korea. This paper studies the physical significance of the storage function model by comparing it with kinematic wave model. The results showed universal applicability of the storage function model to Korean basins. Through a comparison of the basic equations for the models, the storage function model parameters, K, P and $T_l$, are shown to be related with the kinematic wave model parameters, k and p. The analysis showed that P and p are identical and K and $T_l$ can be related to k, basin area, and coefficients of Hack's law. To apply the storage function model throughout the southern part of Korean peninsular, regional parameter relationships for K and $T_l$ were developed for watershed area using data from 17 watersheds and 101 flood events. These relationships combine the kinematic wave parameters with topographic information using Hack's Law.

Validation on the Utilization of Small-scale Unmanned Aerial Systems(sUAS) for Topographic Volume Calculations (토공량 산정을 위한 소형무인항공시스템의 활용성 평가)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.111-126
    • /
    • 2017
  • Small-scale UAS(Fusion technique of Unmanned Aerial Vehicles platform and Sensors, 'sUAS') opens various new applications in construction fields and so becoming progressively common due to the considerable potentials in terms of accuracy, costs and abilities. The purpose of this study is that the investigation of the validation on the utilization of sUAS for earth stockpile volume calculations on sites. For this, generate 3D models(DSM) with sUAS aerial images on an cone shaped soil stockpile approximately $270m{\times}300m{\times}20m$, which located at Baegot Life Park in Siheung-si, compared stockpile volume estimates produced by sUAS image analysis, against volume estimates obtained by GNSS Network-RTK ground surveying method which selected as the criteria of earth stockpile volume. The result through comparison and examination show(demonstrate) that there was under 2% difference between the volume calculated with the GNSS Network RTK data and the sUAV data, especially sUAS imaged-based volume estimate of a stockpile can be greatly simplified, done quickly, and very cost effective over conventional terrestrial survey methods. Therefore, with consideration of various plan to assess the height of vegetation, sUAS image-based application expected very useful both volume estimate and 3D geospatial information extraction in small and medium-sized sites.

Detection and Analysis of Post-Typhoon, Nabi Three-Dimensional Changes in Haeundae Sand Beach Topography using GPS and GIS Technology (GPS·GIS 기법을 활용한 태풍 후 해운대 해빈지형의 3차원 변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Jeon, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.82-92
    • /
    • 2006
  • As beaches throughout Korea have suffered great losses of sand due to artificial developments and meteorological phenomena, particularly typhoons, it is necessary to monitor beaches that are prone to erosion continuously, establish and enforce a comprehensive plan to attack coastal erosion with the object of the long-term management. However, debates and temporary measures, not based on accurate coastal zone surveys and analyses, have been established up to now. Therefore, with Haeundae sand beach as a case study, we proposed methods to collect accurate spatial data of the coastline and the sand beach through GPS survey. And we detected and analyzed topographic changes resulting from Typhoon Nabi quantitatively and qualitatively, by using GIS technique. Results showed a mean elevation of 1.95 m, a total area of 53,441 $m^2$, and a total volume of 104,639 $m^3$ after Typhoon Nabi. Mean elevation rose 0.06 m between the pre- and the post-typhoon surveys by a protective shore wall. However, strong winds and north-northeast surges brought by the typhoon caused erosion of the area and the volume, by 3,096 $m^2$ and 2,320 $m^3$. Accurate spatial databases of coastal zones based on integrated GPS GIS techniques and quantitative and qualitative analyses of topographical changes will help Korea develop systematic and effective countermeasures against coastal erosion.

  • PDF

Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan (대룡산 토석류 특성 분석 및 위험지역 예측에 관한 연구)

  • CHOI, Young-Nam;LEE, Hyung-Ho;YOO, Nam-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.48-62
    • /
    • 2018
  • In this study, landslide of debris flow occurred at 51 sites around Daeryounsan located in between Chuncheon-si and Hongcheon-gun during July in 2013 were investigated in field and behavior characteristics of debris flow were analyzed on the basis of records of rainfall and site investigation. According to debris flow types of channelized and hill slope, location and slope angle of initiation and deposit zone, and width and depth of erosion were investigated along entire runout of debris flow. DEM(Digital Elevation Model) of Daeryounsan was constructed with digital map of 1:5,000 scale. Land slide hazard was estimated using SINMAP(Stability INdex MAPping) and the predicted results were compared with field sites where debris flow occurred. As analyzed results, for hill slope type of debris flow, predicted sites were quite comparable to actual sites. On the other hand, for channelized type of debris flow, debris flow occurrence sites were predicted by using stability index associated with topographic wetness index. As analyzed results of 4 different conditions with the parameter T/R, Hydraulic transmissivity/Effective recharge rate, proposed by NRCS (Natual Resources Conservation Service), predicted results showed more or less different actual sites and the degree of hazard tended to increase with decrease of T/R value.

Epidemiological Aspects of Osteosarcoma, Giant Cell Tumor and Chondrosarcoma Musculoskeletal Tumors - Experience of the National Rehabilitation Institute, Mexico City

  • DelaGarza-Montano, P;Estrada-Villasenor, E;Dominguez Rubio, R;Martinez-Lopez, V;Avila-Luna, A;Alfaro-Rodriguez, A;Garciadiego-Cazares, D;Carlos, A;Hernandez-Perez, AD;Bandala, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6451-6455
    • /
    • 2015
  • Background: Primary bone neoplasms are rare, contributing only 0.2% of the global burden of all human malignancies. Osteosarcoma (OS) and chondrosarcoma (CS) are the most common malignancies of bone. The giant cell tumor of bone (GCTb) is a benign tumor with behavior characterized by osteolytic bone destruction. The OS, CS and GCTb affect both sexes, all races and generally have incidence peaks regarding the age of the patient which vary according to the tumor type. We analyzed the incidences of OS, CS and GCTb and their relations with gender and age in patients treated in the National Rehabilitation Institute (INR, for its acronym in Spanish) over a period of nine years. Materials and Methods: In the study period, clinic pathological data for 384 patients were obtained with clinical, radiological and histopathological diagnosis for OS, GCTb and CS. Data analysis was performed using the chi-square and Fisher's exact tests. Results: From 2006 to 2014 were recorded 384 cases of bone malignancies in the database of INR. The GCTb had the highest incidence (53.1%), followed by OS (31.3%) and finally the CS (15.6%). The overall average age was $33.6{\pm}15.8$ years and the overall frequency of gender had a ratio of 1/1.03 male/female. The states with the highest incidence were Distrito Federal and Estado de Mexico with 29.2% and 25.3% respectively. Malignant neoplasms of bone assessed in the course of nine years show three significant increases in 2008, 2011 and 2014 (p=0.14). We found association between sex and tumor type (p=0.03), GCTb and CS predominated in females (54.9% and 56.6% respectively), while for the OS males were most affected (59.1%). Age was different in relation with tumor type (p=0.0001), average age was $24.3{\pm}11.2$ years for OS, $34.5{\pm}13$ years for GCTb and $49.2{\pm}18.5$ years for CS. Furthermore, associations of tumor type with topographic location of the primary tumor (P=0.0001) were found. Conclusions: In this study we can see that incidence of musculoskeletal tumor in our population is continuously increasing and in nine years an approximately 200% increase of musculoskeletal tumor cases was observed.

Development and Application of Landslide Analysis Technique Using Geological Structure (지질구조자료를 이용한 산사태 취약성 분석 기법 개발 및 적용 연구)

  • 이사로;최위찬;장범수
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.247-261
    • /
    • 2002
  • There are much damage of people and property because of heavy rain every year. Especially, there are problem to major facility such as dam, bridge, road, tunnel, and industrial complex in the ground stability. So the counter plan for landslide or ground failure must be necessary In the study, the technique of regional landslide susceptibility assessment near the Ulsan petrochemical complex and Kumgang railway bridge was developed and applied using GIS. For the assessment, the geological structures such as bedding and fault were surveyed and the geological structure, topographic, soil, forest, and land use spatial database were constructed using CIS. Using the spatial database, the factors that influence landslide occurrence, such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of forest, and land use were calculated or extracted from the spatial database. For application of geological structure, the geological structure line and fault density were calculated. Landslide susceptibility was analyzed using the landslide-occurrence factors by probability method that is summation of landslide occurrence probability values per each factors range or type. The landslide susceptibility map can be used to assess ground stability to protect major facility.

  • PDF

Case Study on the Hazard Susceptibility Prediction of Debris Flows using Surface Water Concentration Analysis and the Distinct Element Method (수계 집중도 분석 및 개별요소법을 이용한 토석류 위험도 예측 사례 연구)

  • Lee, Jong-Hyun;Kim, Seung-Hyun;Ryu, Sang-Hoon;Koo, Ho-Bon;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Various studies regarding the prediction of landslides are underway internationally. Research into disaster prevention with regard to debris flows is a particular focus of research because this type of landslide can cause enormous damage over a short period. The objective of this study is to determine the hazard susceptibility of debris flow via predictions of surface water concentrations based on the concept that a debris flow is similar to a surface water flow, as it is influenced by mountain topography. This study considered urban areas affected by large debris flows or landslides. Digital mapping (including the slope and upslope contributing areas) and the wetness index were used to determine the relevant topographic factors and the hydrology of the area. We determined the hazard susceptibility of debris flow by predicting the surface water concentration based on the topography of the surrounding mountainous terrain. Results obtained using the distinct element method were used to derive a correlation equation between the weight and the impact force of the debris flow. We consider that in using a correlation equation, this method could assist in the effective installation of debris-flow-prevention structures.