• Title/Summary/Keyword: Topic identification

Search Result 91, Processing Time 0.022 seconds

The Identification of Emerging Technologies of Automotive Semiconductor

  • Daekyeong Nam;Gyunghyun Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.663-677
    • /
    • 2023
  • As the paradigm of future vehicles changes, the interest in automotive semiconductor, which plays a key role in realizing this, is increasing. Automotive semiconductors are the technology with very high entry barriers that require a lot of effort and time because it must secure technology readiness level and also consider safety and reliability. In this technology field, it is very important to develop new businesses and create opportunities through technology trend analysis. However, systematic analysis and application of automotive semiconductor technology trends are currently lacking. In this paper, U.S. registered patent documents related to automotive semiconductor were collected and investigated based on the patent's IPC. The main technology of automotive semiconductor was analyzed through topic modeling, and the technology path such as emerging technology was investigated through cosine similarity. We identified that those emerging technologies such as driving control for vehicle and AI service appeared. We observed that as time passed, both convergence and independence of automotive semiconductor technology proceeded simultaneously.

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

Refined identification of hybrid traffic in DNS tunnels based on regression analysis

  • Bai, Huiwen;Liu, Guangjie;Zhai, Jiangtao;Liu, Weiwei;Ji, Xiaopeng;Yang, Luhui;Dai, Yuewei
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.40-52
    • /
    • 2021
  • DNS (Domain Name System) tunnels almost obscure the true network activities of users, which makes it challenging for the gateway or censorship equipment to identify malicious or unpermitted network behaviors. An efficient way to address this problem is to conduct a temporal-spatial analysis on the tunnel traffic. Nevertheless, current studies on this topic limit the DNS tunnel to those with a single protocol, whereas more than one protocol may be used simultaneously. In this paper, we concentrate on the refined identification of two protocols mixed in a DNS tunnel. A feature set is first derived from DNS query and response flows, which is incorporated with deep neural networks to construct a regression model. We benchmark the proposed method with captured DNS tunnel traffic, the experimental results show that the proposed scheme can achieve identification accuracy of more than 90%. To the best of our knowledge, the proposed scheme is the first to estimate the ratios of two mixed protocols in DNS tunnels.

Preprocessing Algorithm for Enhancement of Fingerprint Identification (지문이미지 인증률 향상을 위한 전처리 알고리즘)

  • Jung, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • This paper proposes new preprocessing algorithm to extract minutiae in the process of fingerprint recognition. Fingerprint images quality enhancement is a topic phase to ensure good performance in a topic phase to ensure good performance in a Automatic Fingerprint Identification System(AFIS) based on minutiae matching. This paper proposes an algorithm to improve fingerprint image preprocessing to extract minutiae accurately based on directional filter. We improved the suitability of low quality fingerprint images to better suit fingerprint recognition by using valid ridge vector and ridge probability of fingerprint images. With the proposed fingerprint improvement algorithm, noise is removed and presumed ridges are more clearly ascertained. The algorithm is based on five step: computation of effective ridge vector, computation of ridge probability, noise reduction, ridge emphasis, and orientation compensation and frequency estimation. The performance of the proposed approach has been evaluated on two set of images: the first one is self collected using a capacitive semiconductor sensor and second one is DB3 database from Fingerprint Verification Competition (FVC).

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Conceptual Description of Hierarchical Structure in Discourse (담화 내 계층 구조의 개념 구조적 기술)

  • 구유선
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.3_4
    • /
    • pp.23-32
    • /
    • 2000
  • The distinction between main structure and side structure in discourse which was central to narrative studies has lacked an adequate. formal definition. This study supports the contention that there exists a hierarchical structure between discourse units constituting main structures, substructures, and side structures. The aim of this study is twofold: (j) to present an adequate. formal definition that provides a general identification criterion for distinguishing main structure from substructure and side structure proposed by Kuppevelt, and (jj) to propose conceptual relations representing hierarchical structures in discourse based on Sowa's Conceptual Structure Theory. The proposed conceptual relations which represent hierarchy and pragmatic relations of discourse segments are: DIGR (digression). T-SHFT (topic shift), and FRAM (frame). This s study shows pragmatic functions can be incorporated within CST in a systematic way.

  • PDF

Research trends related to childhood and adolescent cancer survivors in South Korea using word co-occurrence network analysis

  • Kang, Kyung-Ah;Han, Suk Jung;Chun, Jiyoung;Kim, Hyun-Yong
    • Child Health Nursing Research
    • /
    • v.27 no.3
    • /
    • pp.201-210
    • /
    • 2021
  • Purpose: This study analyzed research trends related to childhood and adolescent cancer survivors (CACS) using word co-occurrence network analysis on studies registered in the Korean Citation Index (KCI). Methods: This word co-occurrence network analysis study explored major research trends by constructing a network based on relationships between keywords (semantic morphemes) in the abstracts of published articles. Research articles published in the KCI over the past 10 years were collected using the Biblio Data Collector tool included in the NetMiner Program (version 4), using "cancer survivors", "adolescent", and "child" as the main search terms. After pre-processing, analyses were conducted on centrality (degree and eigenvector), cohesion (community), and topic modeling. Results: For centrality, the top 10 keywords included "treatment", "factor", "intervention", "group", "radiotherapy", "health", "risk", "measurement", "outcome", and "quality of life". In terms of cohesion and topic analysis, three categories were identified as the major research trends: "treatment and complications", "adaptation and support needs", and "management and quality of life". Conclusion: The keywords from the three main categories reflected interdisciplinary identification. Many studies on adaptation and support needs were identified in our analysis of nursing literature. Further research on managing and evaluating the quality of life among CACS must also be conducted.

The Design for Self-care System Based on RFID (RFID를 이용한 Self-care System 설계)

  • Xiao, Huang;Zhou, Kun-Peng;Jin, Woo-Jeong;Cho, Yong-Soon;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.879-881
    • /
    • 2010
  • For the rapid development of society, such as small family, one-people family is following. The traditional family is being changed, so the older stay home alone. That makes it more and more. Staying home alone, the older's health and safety are worth considering by us. With the rapid development of RFIDRadio Frequency Identification) technology, its applications have extended to all areas of our lifes. RFIDRadio Frequency Identification) has became a major topic of concern in multi-industry. With the high-speed economic growth and the development of science, medicine, the old people's life expectancy is increasing slightly. So it is necessary to design a protective system for the older's safety. In this thesis, self-care system is made by using RFID(Radio Frequency Identification) technology to authenticate an user and using TTS(test to speech) to convert character information to voice information and also using infrared radiation technology to protect home effectively, and using e-blood pressure monitors to examination the older's bodies.

  • PDF

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.

Role of Machine Learning in Intrusion Detection System: A Systematic Review

  • Alhasani, Areej;Al omrani, Faten;Alzahrani, Taghreed;alFahhad, Rehab;Alotaibi, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.155-162
    • /
    • 2022
  • Over the last 10 years, there has been rapid growth in the use of Machine Learning (ML) techniques to automate the process of intrusion threat detection at a scale never imagined before. This has prompted researchers, software engineers, and network specialists to rethink the applications of machine ML techniques particularly in the area of cybersecurity. As a result there exists numerous research documentations on the use ML techniques to detect and block cyber-attacks. This article is a systematic review involving the identification of published scholarly articles as found on IEEE Explore and Scopus databases. The articles exclusively related to the use of machine learning in Intrusion Detection Systems (IDS). Methods, concepts, results, and conclusions as found in the texts are analyzed. A description on the process taken in the identification of the research articles included: First, an introduction to the topic which is followed by a methodology section. A table is used to list identified research articles in the form of title, authors, methodology, and key findings.