
40  |   	﻿�  ETRI Journal. 2021;43(1):40–52.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

At a time when network security and monitoring are of vital 
importance due to increasing network traffic and growing cy-
bersecurity concerns, comprehensive network surveillance is 
a necessity. Information, such as protocol type or application 
signature, proves invaluable for network administrators and 
network designers. However, with the need for privacy to be 
protected and the prevalence of malware, anti-monitoring tech-
niques are developing rapidly. There are diverse techniques 
that afford network users the capability of circumventing 
censorship.

With the growing use of cryptographic protocols such 
as SSL and SSH, increasing amounts of network traffic 

cannot be monitored using deep packet inspection (DPI) 
tools. This has enhanced the undetectability of some ma-
licious network activities. One covert communication 
technique for distributing malware is to set up a tunnel 
to transmit data over a frequently-used standard proto-
col [1]. Several techniques have been designed for dis-
guising one protocol as another to bypass censorship at 
network boundaries. There has recently been an increase 
in the malicious use of tunnel technology. Currently, the 
most common tunneling technologies are HTTP tunnel-
ing [2], SSH tunneling [3], and DNS tunneling [4]. For 
these tunnels, the actually prohibited traffic is encapsu-
lated within the payload of covering protocols. As a re-
sult, the flow in the tunnel cannot be directly inspected, 
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DNS (Domain Name System) tunnels almost obscure the true network activities of 
users, which makes it challenging for the gateway or censorship equipment to iden-
tify malicious or unpermitted network behaviors. An efficient way to address this 
problem is to conduct a temporal-spatial analysis on the tunnel traffic. Nevertheless, 
current studies on this topic limit the DNS tunnel to those with a single protocol, 
whereas more than one protocol may be used simultaneously. In this paper, we con-
centrate on the refined identification of two protocols mixed in a DNS tunnel. A 
feature set is first derived from DNS query and response flows, which is incorporated 
with deep neural networks to construct a regression model. We benchmark the pro-
posed method with captured DNS tunnel traffic, the experimental results show that 
the proposed scheme can achieve identification accuracy of more than 90%. To the 
best of our knowledge, the proposed scheme is the first to estimate the ratios of two 
mixed protocols in DNS tunnels.
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which has increased the difficulty of identifying mali-
cious traffic.

To resolve the risks caused by these tunneling technolo-
gies it is necessary to analyze the features of the tunnel traffic 
to reveal the nature of the protocol running inside.

However, it is an industry axiom that neither port numbers 
nor DPI can be used to reliably identify network applications. 
Many malicious Internet applications with random port num-
bers have equipped enabled tunneling techniques, such as DNS, 
to penetrate firewalls without being blocked [5]. Monitoring a 
comprehensive network is becoming more difficult due to the 
existence of these techniques which disrupt the network traf-
fic. DNS, as a distributed infrastructure that can store, update, 
and disseminate data, matches the requirements for the carrier 
of network tunnels. DNS packets are allowed by almost all 
the security devices. As a result, recent years have witnessed 
the increasing use of stealthy, prevailingly malicious DNS 
tunnels. Several strains of malware such as the Morto worm 
and Feederbo [6], and variants of point-of-sale malware such 
as BernhardPOS and FrameworkPOS [7] demonstrate the in-
creased popularity of DNS tunneling to implement stealthy 
communications. Application-layer tunnels simply can be 
simply built on top of DNS by exploiting the way how regu-
lar standard DNS requests for a given domain are forwarded 
to its authoritative servers. Several free DNS tunnel tools, such 
as Dnscat, Iodine, NSTX, DeNiSe OzymanDNS, and Heyoka, 
are commonly used. The original traffic cannot be directly in-
spected as it becomes a part of the domain name of the DNS 
packets. There have been several schemes for discovering DNS 
tunnels [8–12]. Nevertheless, more detailed information about 
DNS tunneling is still unavailable to the network inspectors. 
The network audit facility can still not determine the protocol 
or application inside the DNS tunnel. To effectively prevent 
malicious activities on the network, it is necessary for network 
analysis to identify the tunnel traffic's carrier protocol espe-
cially the protocol within the tunnel. Currently, there is a lack of 
detailed analysis of the traffic in DNS tunnels. It was first pro-
posed to identify the protocol within DNS tunnels in [13]. This 
method, however, simply classifies the traffic under the DNS 
tunnels and has many restrictions. For some scenarios in C&C 
communication and to circumvent censorship, more than one 
protocol may be used in a DNS tunnel, which can make render 
the identification method for single protocol ineffective. Thus, 
further additional identification methods for multi-protocols 
within DNS tunnels should be developed to bridge this gap.

The existing work on DNS tunnel identification aims to 
identify the protocol within the DNS tunnel, these concentrate 
on the ideal case when only a single protocol is used in the DNS 
tunnel, the protocol-mixed case is not taken into consideration. 
In this paper, we concentrate on the identification of two pro-
tocols combined in a DNS tunnel. A feature set is first derived 
from the DNS request and response flows, which are incorpo-
rated by deep neural networks to construct a regression model. 

To the best of our knowledge, there is an absence of efforts to 
identify hybrid protocols in DNS tunnels. The central proposi-
tion is that the size and transferred pattern information carried 
by queries and responses in DNS packets are sufficient to infer 
the nature of the application protocols in the DNS tunnels, even 
when two protocols are combined. By characterizing the rela-
tionship between the properties and the component, we demon-
strate that it is possible to calculate the packet ratio in the case 
of two protocols being used in DNS tunnels.

The main research contributions of this paper are:

1.	 We designed a feature set based on DNS request and 
response flows, which could discriminate among proto-
cols in DNS tunnels, specifically to be adopted in the 
case of two protocols being combined within a DNS 
tunnel.

2.	 We prove that the two combined protocols in the tunnel 
can be further analyzed and the packet ratio of the two 
protocols in flows can be estimated with the proposed 
scheme.

3.	 We provide an experimental analysis of the proposed 
scheme using real DNS tunnel traffic, to prove the effec-
tiveness of the proposed scheme.

The rest of the paper is organized as follows. In the next 
section, we summarize the related works about the detec-
tion of tunnels based on the main application layer pro-
tocol, especially the DNS tunnels, and the identification 
of internal tunnel traffic. Section 3 is dedicated to the de-
scription of the features to discriminate the flows with dif-
ferent multiple protocols in DNS tunnels and to contribute 
to estimating the ratio of the two protocols hiding in one 
tunnel. In Section 4, we introduced the proposed scheme 
for managing the hybrid DNS tunnel traffic containing two 
combined protocols. In Section 5, we introduce the data 
sources. In Section 6, we establish three regressive models 
for HTTP & SMTP, HTTP & SSH, and SMTP & SSH. re-
spectively. In Section 7, we used the data set to validate the 
proposed method. In Section 8, we offer the conclusions of 
this research and discuss future work.

2  |   RELATED WORKS

A lot of reference works have been done to detect abnormal 
DNS traffic. Born and Gustafson [8] empirically showed that 
normal DNS question names follow Zipf's law, that is, an 
English-like distribution. Question names of DNS tunnels, 
however, show a much flatter distribution since tunneled traf-
fic is often compressed or encrypted and then encoded for 
transmission. They also developed an n-gram visualization 
called NgViz [9], so that an operator can use spatial reasoning 
to quickly identify anomalies in DNS traffic. Their analysis 
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was limited to unigrams and bigrams, that is, 1-grams and 
2-grams. Qi and others [10] also used bigrams for DNS tun-
nel detection. They calculated the bigrams present in each 
DNS query and used bigram frequencies calculated in an of-
fline training phase to score the DNS query. Ellens and others 
[11] used a traffic-analysis approach to DNS tunnel detec-
tion. They ran the DNS tunnel tool, Iodine on a host in a 
campus network, and use the tunnel to exfiltrate dummy data, 
run an interactive session mimicking a command and con-
trol channel, and also browse web content bypassing security 
measures on the network. In contrast to payload techniques, 
the authors analyzed only flow metadata collected using an 
IPFIX generator called yaf. Cejka and others [12] focused on 
the detection of communication tunnels and other anomalies 
in DNS traffic. The proposed detection module is designed to 
process huge volumes of data and to detect anomalies in near 
real-time. It is based on the combinations of statistical analy-
ses of several observed features including application layer 
information. Kara and others [14] presented a system to ana-
lyze the resource record activities of domain names and build 
DNS zone profiles to detect payload distribution channels. 
Their work was based on an extensive year-long analysis of 
malware datasets, and a near real-time feed of passive DNS 
traffic. Anna and others [15] extracted features from the data 
set that employed a penetration testing effort within a DNS 
tunnel and trained random forest classifiers to distinguish 
normal DNS activity from tunneling activity. Aiello and oth-
ers [16–19] have done extensive research on DNS tunnels. 
They first evaluated the performance of the DNS tunnel and 
some common tools [16]. In [17] they undertook DNS tun-
neling detection by means of simple supervised learning 
schemes, applied to the statistical features of DNS queries 
and answers. In [18], they obtained results from experiments 
conducted on a live network by replicating individual detec-
tions over successive samples over time and making a global 
decision using a majority voting scheme. The technique over-
comes traditional classifier limitations. Then they [19] inves-
tigated the application of a second-level classifier, which 
applies a fusion of the classifications made by the traditional 
classifiers. Finding the minimum number of samples of the 
second-level classifier to achieve reliable detection is their 
ultimate objective. Liu and others [20] proposed an effective 
and applicable DNS tunnel detection mechanism. This ap-
proach analyzes Recursive DNS (RDNS) for detection. The 
main difference between this method and the previous is that 
it focuses on the character distribution differences between 
normal and tunnel traffic and also time frequency. To better 
apply the machine learning method to tunnel flow analysis, 
Davis and Foo [21] proposed automated feature engineering 
to derive a suite of additional features from a given set of 
basic features with the aim of improving classifier accuracy 
through discriminative features and to assist data scientists 
through automation.

Since the discovery introduction of application protocol 
tunneling, some studies on traffic identification in DNS tun-
nels have been carried out on traffic identification in DNS 
tunnels. Homem and Papapetrou [22] presented a machine 
learning approach, based on feature subsets of network traf-
fic evidence, to aid forensic analysis through automating the 
inference of protocols carried within DNS tunneling tech-
niques. They explore four network protocols, namely, HTTP, 
HTTPS, FTP, and POP3. Three features are extracted from 
the DNS tunneled traffic: IP packet length, DNS Query 
Name Entropy, and DNS Query Name Length. Almusawi 
and Amintoosi [23] proposed a multi-label support vector 
machine in order to detect and classify the DNS tunneling. 
The proposed method was evaluated using a benchmark data-
set that contains contained numerous DNS queries and was 
compared with a multi-label Bayesian classifier based on the 
number of corrected classified DNS tunneling instances. In 
this paper, we concentrate on the refined identification of two 
protocols mixed combined in a DNS tunnel. A feature set is 
first derived from DNS request and response flows, which is 
then incorporated with deep neural networks to construct a 
regression model.

3  |   CHARACTERISTICS ANALYSIS

In this section, the features extracted from DNS flows with 
two-protocol mixed in DNS tunnels are introduced. We ana-
lyze the  DNS tunnel flows from two perspectives, namely 
length and time. DNS tunnels operate by encapsulating origi-
nal data into query, name or response of a DNS packet, being 
encoded and encrypted, which render the DNS packet data 
unreadable. In such cases, we can only use the metadata of 
the DNS flows, namely length and interarrival time (IAT) of 
packets. Based on the metadata of the DNS tunnel flows, we 
further obtain a series of statistical features that characterize 
behaviors of real protocols or applications. Considering the 
difference of bandwidth in two directions of DNS flows, we 
deal with incoming and outgoing DNS traffic and extract fea-
tures separately. In DNS tunnels, packets can be divided into 
two types according to their functions, namely data packets 
and control packets. Data packets are used for transferring 
user data and control packets are used for heartbeat or pad-
ding. For different protocols in DNS tunnels, the amount or 
frequency of control packets also varies. We parse all DNS 
tunnel packets including data packets and control packets, 
and extract the query name or answer, from which we obtain 
metadata, namely the length of user data and IAT. We pro-
vide a summary of features of DNS tunnel flows as shown 
in Table 1.

The amount of data transmitted per packet is important 
for the identification of different protocols. It is also the basic 
factor that influences the ratio between two protocols in DNS 
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tunnels. When two protocols are combined, the amount of 
data transmitted varies while the mixing ratio changes. To 
describe this feature more accurately, we select mean and 
variance as measures of the data transferred. Mean and vari-
ance can determine how much data has been transferred in 
the DNS Tunnels and the difference between per packet and 
the mean. Besides, with the use of different protocols in DNS 
tunnels, features extracted from DNS flows also behave dif-
ferently. The size of the user data tunneled in DNS packets is 
limited to a certain length, which is determined by the DNS 
tunneling server and client, the used method used and so on. 
Consequently, the transferred data generally conforms to a 
certain pattern depending on the inner network protocol. It 
can be inferred that when two different protocols are used in 
DNS tunnels, these features will change with the difference 
of the packet ratio between the two protocols. Each protocol 
transmits data in a regular pattern which is reflected in its 
length can be found in the length distribution of a certain 
rule.

The existence of heartbeat packets is an important fea-
ture of DNS tunnels. Since the DNS tunnels use a way of 
enduring connections, the client must ensure that it remains 
connected to the server during free time. Namely, when 
there is no user data being transmitted, the client still has 
to send packets to the server and gets responses, which is 
known as the heartbeat. Because the client is only ensuring 
that the server is connected, heartbeat packets are usually 
short. Besides, when a specific protocol is used in a DNS 
tunnel for transmission, the heartbeat packet can play a 
greater than expected role. Namely, when the request sent 
by the DNS tunnel internal protocol to the server or the 
data sent by the server in response is hosted by multiple 
DNS packets, the corresponding reverse direction packets 

must be supplemented by the heartbeat packets. For differ-
ent protocols, the number of packets used to transmit data 
for a request or response is different, and the number of 
heartbeat packets also varies.

Besides, IAT also has a great impact on the ratio between 
two protocols in DNS tunnels. Among the three protocols, 
HTTP and SSH are highly interactive application protocols, 
while SMTP, on the contrary, is a low interactive application 
protocol. The differences between the two kinds of proto-
cols are that the IAT of the protocol with high interactivity 
is greater than that of the protocol with low interactivity. IAT 
with high interactivity is not regular in general, but it is rela-
tively fixed with low interactivity.

4  |   SCHEME OF REFINED 
IDENTIFICATION OF HYBRID 
TRAFFIC IN DNS TUNNELS

In this section, we introduce the framework of the proposed 
scheme, which depicts the process of identifying two-proto-
col combined in a DNS tunnel. Figure 1 shows the frame-
work proposed for the scheme. We first describe the factors 
influencing the ratio between the two protocols in DNS tun-
nels and the method of extracting their principal components. 
A regression model based on a supervised learning method-
ology is proposed to analyze the ratio between them.

There are multiple correlations between the factors in-
fluencing the ratio of the two protocols. The multiple 

T A B L E  1   Features of DNS tunnel flows

No. Short Description

F1 min_IAT Minimum packet IAT

F2 q1_IAT First quartile IAT

F3 med_IAT Median IAT

F4 mean_IAT Mean IAT

F5 q3_IAT Third quartile packet IAT

F6 max_IAT Maximum packet IAT

F7 var_IAT Variance in packet IAT

F8 min_data Minimum of the query name/answer size

F9 q1_data First quartile of the query name/answer size

F10 med_data Median of the query name/answer size

F11 mean_data Mean of the query name/answer size

F12 q3_data Third quartile of the query name/answer size

F13 max_data Maximum of the query name/answer size

F14 Var_data Variance of the query name/answer size

F15 control Proportion of heartbeat packets

F I G U R E  1   Framework of identifying hybrid DNS tunnel traffic 
containing two combined protocols
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correlations, also known as multicollinearity, refer to a linear 
correlation between variables. In regression analysis, when 
there is a multiple correlation between independent variables, 
it will have a great impact on the estimation of the regression 
coefficient. Therefore, if multiple correlations among various 
influencing factors are observed before regression analysis, 
principal component analysis method should be adopted to 
eliminate the multiple correlation. The principal component 
analysis is a method to convert multiple indexes into a few 
comprehensive indexes. The solution steps of principal com-
ponent extraction are as follows:

Step 1: The normalized data of each indicator were pro-
cessed to obtain the normalized matrix before the principal 
component analysis, in order to eliminate the dimensional 
differences between statistical indicators. Suppose there are 
p factor independent variables, and a total of n samples. Then 
the factor independent variable matrix is X = [x1, x2, …, xp]. 
The normalization formula is as follows:

 In the formula, i = 1, 2, …, n; j = 1, 2, …, p.
Step 2: Calculate the codifference matrix of the sample 

data matrix of independent variables of the influencing fac-
tors after standardized transformation, and the calculation 
formula is

Step 3: Replace the total codifference matrix with the sam-
ple codifference matrix. Calculate all characteristic root λj of S 
with the corresponding characteristic vector, namely principal 
component and arrange in order of size of λj.

Step 4: Calculate the contribution rate and cumulative 
contribution rate of the principal components.

In (5), Kj is the contribution rate of the main component. 
In (6), Kr is the cumulative contribution rate of the first rth 
principal components.

Step 5: Determine the number of principal components 
according to the cumulative contribution rate. Generally, 
the cumulative contribution rate is not less than 85%. When 
the number of principal components whose cumulative con-
tribution rate reaches 85%. Then the principal components 
Z = [z1, z2, …, zk] are extracted.

Based on the extracted principal components Z = [z1, z2, 
…, zk], regression analysis was carried out on the flows with 
two protocols in DNS tunnels. Assume that the multiple re-
gression model is denoted as

where ε is a random error term, which indicates the influ-
ence of other random factors on the ratio of two application 
protocols y. It is generally assumed that it obeys the normal 
distribution N(0, δ). A is the model regression coefficient. 
Because there are many factors that influence the ratio of two 
protocols in DNS tunnels, and the relationship between the 
factors and the ratio is complicated, we use the deep neural 
network to establish the relationship model between factors 
and the ratio.

The deep learning framework in this paper consists of 
an input layer, three hidden layers and an output layer. The 
input layer accepts the k factors of traffic features, namely 
Z =  [z1, z2, …, zk]. Then these k factors are connected to 
the hidden layers. There are three hidden layers in total. 
The hidden layers can be represented as Hp = [hp1, hp2, …, 
hpm], where p represents the hidden layers and m represents 
the number of hidden layers. The first hidden layer con-
tains 16 nodes, the second contains 8 nodes, and the third 
layer contains 4 nodes. The three hidden layers are all fully 
connected layers, namely each node in the previous layer is 
connected to each node in the subsequent layer. The con-
nection method is denoted as

where W is the matrix of the weight and B is the bias vector. 
In the simplest case, the data is linear, namely, only a straight 
line is needed to accurately classify or fit the samples. However, 
in complex cases, the data are linearly indivisible, so nonlin-
ear factors are introduced to process the samples. Because the 
linear model cannot meet the specifications, non-linear factors 
must be introduced. Sigmoid and tanh are the two frequently 
used nonlinear activation functions in the fully connected layer. 
Their form is denoted as:

(1)X̂=

(

xij−xj

aj

)

n×p

,

(2)xj =
1

n

n
∑

i=1

xij,

(3)a2
j
=

1

n−1

n
∑

i=1

(

xij−xj

)2
.

(4)S2 =

(

s2
ij

)

p×p
=

1

n−1
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(5)Kj =
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j=1
�j

,
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j=1
�j
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j=1
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.

(7)y= f (A, Z)+�,
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(9)f (x)=
1

1+e−x
,



      |  45BAI et al.

The activation function used in the first two hidden lay-
ers is the tanh function and the activation function used in 
the output layer is the sigmoid function.

The learning process is divided into forwarding propaga-
tion and back-propagation. Forward propagation allows input 
information to be transmitted to the output layer under the 
corresponding weight, threshold and activation functions. 
When the error between the output result and the expected 
value is greater than the specified precision, the sensitivity is 
back-propagated, and the weight and threshold of each layer 
are corrected incrementally. With repeated iteration, the error 
finally reaches the specified precision. In this research, we 
first calculated the error between the output and the actual 
value. Then the gradient descent method was used for iter-
ative calculation, and the error reached the minimum value.

5  |   DATASET SETUP

To analyze the performance of the scheme for estimating the 
ratio of components in the DNS Tunnels, we used network 
traffic generated by three protocols, namely HTTP, SSH, 
and SMTP running in DNS Tunnels. As shown in Figure 2, 
two DNS tunnels were built for our experiments. The first 
tunnel was built between an Amazon EC2 cloud server lo-
cated in Dublin, Ohio, USA, and clients which have access 
to the Internet via the campus network in Nanjing University 
of Science and Technology (NJUST), and the second tunnel 
was built between the Amazon EC2 cloud server and another 
Amazon EC2 server. With the two DNS tunnels, we gener-
ated hybrid DNS tunnel traffic containing two combined pro-
tocols. DNS tunnel server access networks to meet the needs 
of clients to access the network. These protocols were se-
lected as they represent three important types of applications 
on the Internet, namely Websites, remote control, and E-mail. 
To capture the traffic of DNS Tunnels, the destination was 

implemented in Amazon Elastic Compute Cloud (Amazon 
EC2), which is a web service that provides secure, resiza-
ble compute capacity in the cloud. The source was a laptop 
which was connected to the Internet via public WiFi on the 
NJUST campus. There is another DNS Tunnel client in the 
public network. And then the DNS Tunnel was built using a 
common tool named Iodine.

In practice, without loss of generality, we assume that the 
three network protocols were used to get Web pages, control 
a remote host, and send E-mail. For the HTTP protocol, the 
Web pages we got from the Internet are all from the Alexa Top 
1 000 000 Sites. For the SSH protocol, we used the most fre-
quently-used command to control the destination. For the SMTP 
protocol, we sent E-mail with different content to the addressee.

For simplicity, we divided the two-protocol mixed traffic 
in the DNS tunnel into 9 cases, in which the percentages of 
all protocols are the integer multiples of 10%. To achieve a 
more accurate estimation, the ratio step should be smaller. 
The model complexity and the training dataset would also 
expand rapidly with smaller ratio steps.

To generate DNS tunnel traffic that combines the two pro-
tocols at a certain ratio, we constructed a mass of network ac-
tivities using these three types of protocols, and recorded the 
corresponding number of packets when it was independently 
implemented within the DNS tunnel. For two-protocol com-
bined cases, we chose two activities from the activity set and 
placed them in the DNS tunnel. The ratio of their correspond-
ing amount of the packets should be consistent with the tested 
ratio. The record of each traffic type is shown in Table 2. For 
the three types of mixed protocols in Table 2, the number of 
flows with each ratio is given. There are 12 586 DNS flows 
comprised of 13 GB of traffic data in total in the dataset. We 
use a C++ program, which was designed to process DNS 
flows, to extract the metadata, and calculate the statistical 
characteristics related to length and time. We saved all the fea-
tures extracted from the DNS flows in a file, in which each 
row represents an instance of a DNS flow with a specific ratio 
between two protocols in the DNS tunnels. Also, each column 
represents an attribute of a DNS flow while the last column is 
marked as the actual ratio of the two protocols.

(10)tanh x=
sinh x

cosh x
=

ex−e−x

ex+e−x
.

F I G U R E  2   Network topology of experimental data source
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6  |   REGRESSIVE MODEL OF 
REFINED IDENTIFICATION OF 
HYBRID TRAFFIC IN DNS TUNNELS

In this section, we used three kinds of traffic, namely HTTP 
& SMTP, HTTP & SSH, and SMTP & SSH respectively, 
to establish a regressive model. Because the experimental 
data are collected from the actual network environment, and 
both sides of the communication follow multiple routes, the 
original time features failed to distinguish different protocols. 
More explicitly the time features in Table 1 had an irregular 
influence on the mixture ratio. Hereinafter, due to the diver-
sity and instability of the time-related features when the net-
work connections are established between hosts in different 
network domains, we only used the length-related features, 
namely, F8–F15. As both outgoing and incoming flows are 
used to extract bidirectional features, the dimension of the 
length-related features is 16. There were three kinds of traffic 
in the DNS tunnels, namely HTTP & SMTP, HTTP & SSH, 
and SMTP & SSH. Each traffic type was divided into nine 
samples according to their protocol ratios. Although the in-
stance data used for training and testing was labeled 1–9, this 
tag is not very precise. Across a narrow range, the value of the 
mark contains an error. In the instance of HTTP & SMTP at 
mark 3, the actual ratio of HTTP to SMTP might be 2.8 or 3.3.

We first analyzed the correlation coefficient between var-
ious features that affect the ratio estimation of the two proto-
cols, three types of samples including HTTP & SMTP, HTTP 
& SSH, and SMTP & SSH were analyzed. We analyzed the 
features F8–F15 for both outgoing and incoming flows. There 
is a degree of correlation among these features that can be 
measured with (11).

In (11), cov represents covariance and D represents vari-
ance. With the calculated correlation coefficient, we found 
a strong correlation between particular features. Figure 3 
shows the correlation coefficients among the features  
F8–F15 in Table 1 for the three hybrid DNS tunnel flows. In 
order to eliminate the correlation between the features and 
select the features with the highest degree of correlation 
to the real ratio, we used the principal component anal-
ysis method. The eigenvalue, variance contribution rate, 
and cumulative contribution rate are shown in Table 3. We 
selected the eight features with the most impact on the es-
timation accuracy.

After the principal component was obtained, the data set 
was used as the input of the deep learning network, and the 
regression model was obtained after the training. In order to 
make full use of the sample data and increase the credibility 
of the model, we used the 10-fold cross-validation method. 
The experimental data was divided into two portions, nine-
tenths for training data, and the remainder as test data. The 
method was iterated 10 times. To facilitate the evaluation of 
the results of the regression model calculation, we rounded 
the test results calculated by the model to obtain the final 
predicted value, and compared this value with the premarked 
value to obtain the final calculation accuracy. Compared 
with the actual ratio, the average accuracy was obtained. We 
trained regressive models for each of the three types of hybrid 
DNS tunnel traffic. After every 200 training iterations, we re-
corded the accuracy of the model. The process of the 10 000 
training iterations of the three types of hybrid traffic is shown 
in Figure 4A and the average accuracy of the 10 sample sets 
in the testing process is shown in Figure 4B.

The model generated by the training will be retained for 
further testing. Prior to having it, we made a simple evalu-
ation of the regression model. Figure 5 shows the residuals 
of the three final models compared with the marked values 
after prediction. It can be seen from the figure that the re-
sidual distribution is above and below the 0 value and the 
value is stable within a certain range, thus conforming to 
the law of random error. Therefore, the model is effective 
for estimating the ratio of the two protocols in the DNS 
tunnel.

7  |   EVALUATION OF REGRESSIVE 
MODEL

In this section, we evaluate the performance of the regression 
model which was trained by using a supervised deep neural 
network using HTTP & SMTP, HTTP & SSH, and SMTP & 
SSH traffic, respectively, which was collected from the networks 

(11)�xy =
cov(x,y)

√

D(x)
√

D(y)
.

T A B L E  2   Different ratios of the two mixed protocols and the 
corresponding number of flow samples

Ratio of the two 
mixed protocols

Numbers of mixed protocol flows

HTTP & 
SMTP

HTTP & 
SSH

SMTP & 
SSH

0:10 468 496 496

1:9 383 425 441

2:8 506 480 444

3:7 420 418 610

4:6 363 492 489

5:5 468 470 578

6:4 450 480 376

7:3 384 444 521

8:2 403 529 498

9:1 451 510 553

10:0 448 448 468

Total 4744 5192 5474
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environment described in Section 5. The label of each sample 
instance is marked according to the actual ratio of the two net-
work application protocols in the DNS tunnel. After the samples 
were input into the algorithm, the calculated results were output 
in the ratio of having one protocol in the DNS tunnel. The re-
sults obtained from the regression model represent four situa-
tions. Ratio type A serves as an example to produce the following 
conclusions:

a.	 True positive (TP): It belongs to the ratio A and is 
identified as A.

b.	 False positive (FP): It does not belong to the ratio A and is 
identified as A.

c.	 False negative (FN): It belongs to the ratio A but is not 
identified as A.

d.	 True negative (TN): It does not belong to the ratio A and 
is not identified as A.

The core evaluation indexes in machine learning are pre-
cision rate (PR), recall rate (RR) and accuracy rate (AR). AR 
represents the ratio of correctly identified samples in the total 
number of samples, as shown in (12). PR represents the ratio 

F I G U R E  3   Correlation coefficient matrix of features F8–F15 in Table 1 of HTTP & SMTP, HTTP & SSH, and SMTP & SSH: (A) HTTP & 
SMTP; (B) HTTP & SSH; (C) SMTP & SSH

(A)

(B)

(C)
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of correctly identified samples in the number of all assigned 
samples, as shown in (13). RR represents the percentage of 
correctly classified samples that should have been correctly 
classified, as shown in (14).

Precision rate and recall rate reflect two aspects of the perfor-
mance of the model. Therefore, the comprehensive index F-score 
of the precision rate and the recall rate is also needed to evaluate 
the performance. The calculation of an F-score is shown in (15).

It can be seen that F-score is a weighted harmonic average 
of precision rate and recall rate, and a high F-score indicates a 
good classification performance. We take the parameter β = 1, 

(12)Accuracy=
TP+TN

TP+FP+TN+FN
,

(13)Precision=
TP

TP+FP
,

(14)Recall=
TP

TP+FN
.

(15)F� = (1+�2)×
Precision×Recall

�2×Precision+Recall
.

T A B L E  3   Principal components that affect the ratio of the mixing protocols within DNS tunnels

Principal

HTTP & SMTP HTTP & SSH SMTP & SSH

Eigenvalue Variance Cumulative Eigenvalue Variance Cumulative Eigenvalue Variance Cumulative

Z1 8.55 50.44% 50.44% 10.11 63.19% 63.19% 8.87 55.44% 55.44%

Z2 2.17 13.56% 64% 1.83 11.44% 74.63% 3.27 20.44% 75.88%

Z3 1.46 9.13% 73.13% 1.25 7.81% 82.44% 1.12 7.0% 82.88%

Z4 1.17 7.31% 80.44% 1.0 6.25% 88.69% 0.72 4.5% 87.38%

Z5 0.82 5.13% 85.57% 0.79 4.94% 93.63% 0.54 3.38% 90.76%

Z6 0.49 3.06% 88.63% 0.42 2.63% 96.26% 0.40 2.5% 93.26%

Z7 0.44 2.75% 91.38% 0.24 1.5% 97.76% 0.38 2.38% 95.64%

Z8 0.3 1.89% 93.27% 0.20 1.25% 99.01% 0.30 1.88% 97.52%

F I G U R E  4   The accuracy in the training and testing process for 
HTTP & SMTP, HTTP & SSH, and SMTP & SSH: (A) Accuracy in 
the iterated training process; (B) Averaged accuracy of 10 sample sets 
in the testing process
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F I G U R E  5   Error of regressive model trained of HTTP & SMTP, 
HTTP & SSH and SMTP & SSH
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namely, the accuracy and recall are equally important. We 
tested the performance of three regression models for HTTP & 
SMTP, HTTP & SSH, and SMTP & SSH, respectively, and it 

can be seen that our proposed method for estimating the packet 
ratio of two protocols in hybrid DNS tunnel traffic is effective.

7.1  |  HTTP & SMTP

There are 4744 flows in total. The confusion matrix is shown 
in the Figure 6A. With the regression model, the number of 
the correctly classified flows is 4631.

The model's precision and recall identification are shown 
in Table 4. The F-score value is shown in Figure 7A.

It can be seen that, for the HTTP & SMTP protocol, the mod-
el's resolution is better in the case of large ratio values for which 
the F-score is above 95%, especially reaching 100% at 10:0. Of 
451 flows with the ratio of 9:1, 449 were correctly identified while 
only 2 flows were wrongly identified as 8:2. The reason is that the 
features of the HTTP and SMTP protocols differ, so the larger the 
difference in the number of packets between the two protocols is, 
the easier it is to get the correct ratio value. For this reason, when 
the ratio value is small, the F-score value of the model will be 
relatively low. Of 468 flows with a ratio of 5:5, 436 were cor-
rectly identified while 29 flows were wrongly identified as 4:6 
and the other 3 were wrongly identified as 1:9, 2:8, and 6:4, re-
spectively. of 363 flows with a ratio of 4:6, 335 were correctly 
identified while 17 flows were wrongly identified as 5:5; 8 were 
wrongly identified as 3:7; 2 were wrongly identified as 2:8, and 1 
was wrongly identified as 1:9.

7.2  |  HTTP & SSH

There were 5192 flows in total. The confusion matrix is 
shown in Figure 6B. With the regression model, 4939 flows 
were correctly classified.

The model's precision and recall rate of identification are 
shown in Table 4. The F-score is shown in Figure 7B.

FIGURE 6   Confusion matrix of two-protocol combined at different 
ratios: (A) HTTP & SMTP; (B) HTTP & SSH; (C) SMTP & SSH

(A)

(B)

(C)

Ratio of the two 
mixed protocols

HTTP & SMTP HTTP & SSH SMTP & SSH

PR RR PR RR PR RR

0:10 1.0000 0.9821 0.9978 1.0000 1.0000 1.0000

1:9 0.9757 0.9452 0.9953 0.9906 1.0000 0.9977

2:8 0.9785 0.9901 0.9390 0.9938 0.9977 0.9977

3:7 0.9810 0.9833 0.9631 0.9378 0.9933 0.9852

4:6 0.9203 0.9229 0.9615 0.9634 0.9815 0.9775

5:5 0.9625 0.9316 0.9376 0.9596 0.9844 0.9844

6:4 0.9845 0.9911 0.9657 0.9375 0.9598 0.9521

7:3 0.9974 0.9843 0.7893 0.9369 0.9680 0.9885

8:2 0.9951 1.0000 0.9471 0.7803 1.0000 1.0000

9:1 0.9825 0.9956 0.9980 0.9843 1.0000 1.0000

10:0 0.9571 1.0000 1.0000 1.0000 1.0000 1.0000

T A B L E  4   Prevision rate and recall 
rate of the trained regression model
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The model's performance for the HTTP & SSH protocol 
is poor compared to its performance for the HTTP & SMTP 
protocol. This is caused by the high similarity in the statisti-
cal features of the HTTP and SSH protocol flows. In particu-
lar, in the statistical features of the flow SSH's file download 
mode is approximately consistent with HTTP's behavior 
when obtaining web pages. Other modes, such as command 
control, differ from the features of HTTP. For this reason, the 
model performed very poorly at a scale of 7:3 and 8:2. Of 
444 flows with the 7:3 ratio, 416 were correctly identified 
while 16 were wrongly identified as the 8:2 ratio and 12 were 
wrongly identified as the 6:4 ratio. Of 529 flows with the 8:2 
ratio, 412 were correctly identified while 111 were wrongly 
identified as ratio 7:3. And 4 were wrongly identified as ratio 
6:4 and the other two were erroneously identified as ratios 
4:6 and 9:1. Of 480 flows with the 2:8 ratio, 477 were cor-
rectly identified while 2 were wrongly identified as ratio 1:9 
and 1 was wrongly identified as ratio 3:7. For the 1:9 and 9:1 
ratios, the model showed high performance, with an F-score 
of greater than 98%. Flows with a mixture ratio of 0:10 and 
10:0 were all correctly identified and were not mistakenly 
allocated to other data flow categories.

7.3  |  SMTP & SSH

There were 5474 flows in total. The confusion matrix of the 
classification results is shown in Figure 6C. With the regres-
sion model, 5419 flows were correctly classified.

The model's precision and recall of identification are shown 
in the Table 4. The F-score value is shown in Figure 7C.

For the SMTP & SSH protocol, the model demonstrated peak 
performance in the last three scale values. Most of the F-scores were 
above 99%. At ratios 0:10, 8:2, 9:1, and 10:0, none were wrongly 
identified. However, the model's identification performance of the 
first few scale values was relatively low. The poorest performance 
was approximately 0.95 when the ratio was 6:4. The cause was the 
relatively close SMTP and SSH protocol mixing ratio.

7.4  |  The case of single protocol

DNS tunnels containing a single-protocol can be viewed as 
the particular case of the bi-protocol DNS tunnels namely, 
that the ratio of the two protocols is either 0:10 or 10:0. As 
proven in Figures 6 and 7, the proposed scheme can also be 
effective in the case of a single protocol being used.

When HTTP and SMTP protocols are combined in the tun-
nel with a mixing ratio of 0:10 (This is alternatively expressed as 
only the SMTP protocol being present), the precision and recall 

F I G U R E  7   F-score of different ratios of hybrid HTTP & SMTP, 
HTTP & SSH and SMTP & SSH protocols in DNS tunnels: (A) HTTP 
& SMTP; (B) HTTP & SSH; (C) SMTP & SSH

(A)

(B)

(C)
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rates are 100% and 98.2%, respectively. When HTTP and SMTP 
protocols are mixed in the tunnel with a mixing ratio 10:0 (This is 
alternatively expressed as only the HTTP protocol being present), 
the model's precision and recall rates are 95.7% and 100%, respec-
tively. When HTTP and SSH protocols are mixed in the tunnel 
with a mixing ratio 0:10 (This is alternatively expressed as only 
the SSH protocol being present), precision rate and recall rate are 
99.8% and 100%, respectively. When the HTTP and SSH proto-
cols are mixed in the tunnel with mixing ratio 10:0 (This is alter-
natively expressed as only the HTTP protocol being present), the 
precision and recall rates are both 100%. When SMTP and SSH 
protocols are mixed in the tunnel with mixing ratio 0:10 (This is 
alternatively expressed as only the SSH protocol being present) 
the precision and recall rates are both 100%. When the SMTP and 
SSH protocols are mixed in the tunnel with mixing ratio 10:0 (this 
is alternatively expressed as only the SMTP protocol being pres-
ent), the precision and recall rates are both 100%.

8  |   CONCLUSIONS

In this study, to identify hybrid DNS tunnel traffic, we in-
vestigated a scheme that proposes to identify the type, and 
estimate the ratio, of two combined protocols. We started by 
extracting features from the request and response flows in 
DNS tunnels, and undertook the processes of feature screen-
ing, correlation analysis, and model training. In a real-world 
network environment, we use the three commonly employed 
protocols to generate hybrid DNS tunnel traffic containing 
two of the protocols, either HTTP, SMTP, or SSH in all pos-
sible combinations. According to the general criteria applied, 
the performance of the proposed method was evaluated using 
the hybrid DNS tunnel traffic. The experimental results show 
that the proposed scheme is effective for estimating the ratio 
of hybrid DNS tunnel traffic containing two mixed protocols.

However, the DNS protocol has a unique packet structure 
and information interaction mode. The extracted features can 
only be applied to DNS tunnels, and cannot be directly ap-
plied to other types of tunneling. For other l approaches, such 
as for HTTP and SSH tunnels, we will continue to carry out 
corresponding research work in the future.

In addition, the proposed method to identify the hybrid DNS 
tunnel traffic can only be applied to the two-protocol mixed 
case. When three or more protocols are mixed in a DNS tunnel, 
the estimated accuracy of the proposed method rapidly drops 
to approximately 0.6. The cases in which more protocols are 
combined in DNS tunnels will be studied in our future work.
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