• 제목/요약/키워드: Topic Mining

검색결과 515건 처리시간 0.028초

Reorganizing Social Issues from R&D Perspective Using Social Network Analysis

  • Shun Wong, William Xiu;Kim, Namgyu
    • Journal of Information Technology Applications and Management
    • /
    • 제22권3호
    • /
    • pp.83-103
    • /
    • 2015
  • The rapid development of internet technologies and social media over the last few years has generated a huge amount of unstructured text data, which contains a great deal of valuable information and issues. Therefore, text mining-extracting meaningful information from unstructured text data-has gained attention from many researchers in various fields. Topic analysis is a text mining application that is used to determine the main issues in a large volume of text documents. However, it is difficult to identify related issues or meaningful insights as the number of issues derived through topic analysis is too large. Furthermore, traditional issue-clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be recognized using traditional issue-clustering methods, even if those issues are strongly related in other perspectives. Therefore, in this research, a methodology to reorganize social issues from a research and development (R&D) perspective using social network analysis is proposed. Using an R&D perspective lexicon, issues that consistently share the same R&D keywords can be further identified through social network analysis. In this study, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Issue clustering can then be performed based on the analysis results. Furthermore, the relationship between issues that share the same R&D keywords can be reorganized more systematically, by grouping them into clusters according to the R&D perspective lexicon. We expect that our methodology will contribute to establishing efficient R&D investment policies at the national level by enhancing the reusability of R&D knowledge, based on issue clustering using the R&D perspective lexicon. In addition, business companies could also utilize the results by aligning the R&D with their business strategy plans, to help companies develop innovative products and new technologies that sustain innovative business models.

텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로 (Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services)

  • 윤혜진;김창식;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.513-519
    • /
    • 2018
  • 본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.

TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법 (Keyword Extraction from News Corpus using Modified TF-IDF)

  • 이성직;김한준
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.59-73
    • /
    • 2009
  • 키워드 추출은 정보검색, 문서 분류, 요약, 주제탐지 등의 텍스트 마이닝 분야에서 기반이 되는 기술이다. 대용량 전자문서로부터 추출된 키워드들은 텍스트 마이닝을 위한 중요 속성으로 활용되어 문서 브라우징, 주제탐지, 자동분류, 정보검색 시스템 등의 성능을 높이는데 기여한다. 본 논문에서는 인터넷 포털 사이트에 게재되는 대용량 뉴스문서집합을 대상으로 키워드 추출을 수행하여 분야별 주제를 제시할 수 있는 키워드를 추출하는 새로운 기법을 제안한다. 기본적으로 키워드 추출을 위해 기존 TF-IDF 모델을 고찰, 이것의 6가지 변형식을고안하여 이를 기반으로 각 분야별 후보 키워드를 추출한다. 또한 분야별로 추출된 단어들의 분야간 교차비교분석을 통해 불용어 수준의 의미 없는 단어를 제거함으로써 그 성능을 높인다. 제안 기법의 효용성을 입증하기 위해 한글 뉴스 기사 문서에서 추출한 키워드의 질을 비교하였으며, 또한 주제 변화를 탐지하기 위해 시간에 따른 키워드 집합의 변화를 보인다.

  • PDF

텍스트 마이닝을 이용한 4차 산업 연구 동향 토픽 모델링 (Topic Modeling on Research Trends of Industry 4.0 Using Text Mining)

  • 조경원;우영운
    • 한국정보통신학회논문지
    • /
    • 제23권7호
    • /
    • pp.764-770
    • /
    • 2019
  • 본 연구에서는 "4차 산업"과 관련된 논문들의 세부 연구 주제를 파악하기 위하여 텍스트 마이닝 기법을 이용하여 논문들을 분석하였다. 이를 위하여 2016년부터 2019년까지 한국학술지인용색인(KCI)에서 "4차 산업"이라는 키워드로 논문을 검색하여 총 685편의 논문을 수집하였다. 논문 수집을 위해서는 Python 기반의 웹 스크랩핑 프로그램을 사용하였으며, 자료 분석을 위해서는 R 언어로 구현된 LDA 알고리즘 기반의 토픽 모델링 기법들을 활용하였다. 수집된 논문들에 대한 Perplexity 분석 결과, 9가지 토픽이 최적으로 결정되었고 수집된 논문들의 9가지 대표 토픽들을 Gibbs 샘플링 방법을 사용하여 추출하였다. 분석 결과, 인공지능, 빅데이터, 사물인터넷, 디지털, 네트워크 등이 상위 주요 기술들로 나타났으며, 산업, 정부, 교육 현장, 일자리 등 4차 산업과 관련한 다양한 분야에서 주요 기술들로 인한 변화에 대한 연구들이 이루어져 왔음을 확인할 수 있었다.

텍스트마이닝을 이용한 미용성형 주요 요인에 관한 연구 (A Text Mining Approach to the Analysis of Key Factors for Cosmetic Plastic Surgery)

  • 이소현;손새아;김희웅
    • 지식경영연구
    • /
    • 제20권1호
    • /
    • pp.45-75
    • /
    • 2019
  • Recently, the growth of beauty industry such as plastic surgery and beauty is continued every year in Korea. With the increased interest in appearance based on the improvement of life standard and the development of media, people's perception of cosmetic plastic surgery is changing. Now, as the service for consumer satisfaction based on their desire, the perception of plastic surgery medical service is changed to the high value-added industry with the high growth potential. Thus, this study aims to suggest the strategies for providing the medical service that could satisfy customers, by drawing the factors cognized as important when customers aim to get the cosmetic plastic surgery, and then additionally analyzing the relationships of those factors. On top of performing the topic modeling based on customers' comments data of social commerce related to cosmetic plastic surgery, this study also conducted the network analysis for visualizing the relations of each keywords. The drawn main factors were divided by applying the sub-categories of the SERVQUAL theory, and the additional characteristics of plastic surgery were shown by referring the relevant previous researches. Moreover, the interview with the cosmetic plastic surgery specialists (plastic surgeons) and customers who actually received the plastic surgery, helped the understanding of the interpretation of each factor and the actual relevant phenomenons. The significance of this study is to draw and discuss the main factors that should be observed by Korean cosmetic plastic surgery medical institutes, by mining and analyzing the opinions of customers interested in the cosmetic plastic surgery and procedure with the use of topic modeling. In other words, the quality of medical service of cosmetic plastic surgery could be improved by presenting the key factors that could be considered by the cosmetic plastic surgery medical service suppliers and also the actual strategies.

텍스트마이닝을 활용한 "잊힐 권리"의 토픽 분석 (Topic Analysis of the "Right to be Forgotten" Using Text Mining)

  • 이소현;구본진
    • 정보관리학회지
    • /
    • 제39권2호
    • /
    • pp.275-298
    • /
    • 2022
  • 본 연구는 잊힐 권리와 관련한 뉴스 기사와 학술지 게재 논문을 대상으로 텍스트마이닝 분석을 활용해 각 문서 내에 나타난 논점과 특성을 살펴보았다. 분석을 위해 '잊힐 권리'와 '잊혀질 권리' 키워드를 검색어로 하여 2010년부터 2020년까지의 데이터를 수집하였다. 수집된 데이터를 대상으로 키워드 분석과 토픽모델링 분석을 수행한 결과, 지난 10년간 뉴스 기사와 학술지 논문에서 다루어진 쟁점은 크게 다르지 않으며, 접근방법 또한 유사한 것으로 나타났다. 다만 뉴스 기사와 학술지 논문 간 비교를 통해 이들 간 공통적으로 나타나는 쟁점과 부분적인 쟁점의 차이가 있음을 확인하였다. 따라서 본 연구에서 도출된 쟁점을 중심으로 기록관리학 분야에서도 적극적인 논의가 이루어져야 할 필요가 있으며, 공통적인 쟁점들을 우선적으로 고려하되, 쟁점상 이견이 존재하는 경우, 이를 다각적으로 논의하는 것이 필요하다고 볼 수 있다. 본 연구는 국내 기록관리학계에서 잊힐 권리와 관련된 논의가 이루어지고 있지 않은 현재의 상황에서 기록관리학 분야에서 잊힐 권리의 의미와 향후 발생할 수 있는 이슈를 도출해볼 수 있었다는데 의의가 있으며, 본 연구의 결과를 중심으로 기록관리학 분야에서 잊힐 권리에 대한 다양한 논의가 이루어지기를 기대한다.

소셜미디어 토픽모델링을 통한 스마트폰 마케팅 전략 수립 지원 (A Topic Modeling Approach to Marketing Strategies for Smartphone Companies)

  • 차윤정;이지혜;최지은;김희웅
    • 지식경영연구
    • /
    • 제16권4호
    • /
    • pp.69-87
    • /
    • 2015
  • Given the huge number of data produced by its users, SNS is a great source of customer insights. Since viral trends in SNS reflect customers' direct feedback, companies can draw out highly meaningful business insights when such data is effectively analyzed and managed. However, while the importance of understanding SNS big data keeps growing, the methods for analyzing atypical data such as SNS postings for business insights over product has not been well studied. This study aims to demonstrate the way to exploit topic modeling method to support marketing strategy generation and therefore leverage business process. First, we conducted topic modeling analysis for twitter data of Apple and Samsung smartphones. Then we comparatively examined the analysis results to draw meaningful market insights about each smartphone product. Finally, we draw out a strategic marketing recommendation for each smartphone brand based on the findings.

A Process-Centered Knowledge Model for Analysis of Technology Innovation Procedures

  • Chun, Seungsu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1442-1453
    • /
    • 2016
  • Now, there are prodigiously expanding worldwide economic networks in the information society, which require their social structural changes through technology innovations. This paper so tries to formally define a process-centered knowledge model to be used to analyze policy-making procedures on technology innovations. The eventual goal of the proposed knowledge model is to apply itself to analyze a topic network based upon composite keywords from a document written in a natural language format during the technology innovation procedures. Knowledge model is created to topic network that compositing driven keyword through text mining from natural language in document. And we show that the way of analyzing knowledge model and automatically generating feature keyword and relation properties into topic networks.

Analyzing Customer Experience in Hotel Services Using Topic Modeling

  • Nguyen, Van-Ho;Ho, Thanh
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.586-598
    • /
    • 2021
  • Nowadays, users' reviews and feedback on e-commerce sites stored in text create a huge source of information for analyzing customers' experience with goods and services provided by a business. In other words, collecting and analyzing this information is necessary to better understand customer needs. In this study, we first collected a corpus with 99,322 customers' comments and opinions in English. From this corpus we chose the best number of topics (K) using Perplexity and Coherence Score measurements as the input parameters for the model. Finally, we conducted an experiment using the latent Dirichlet allocation (LDA) topic model with K coefficients to explore the topic. The model results found hidden topics and keyword sets with high probability that are interesting to users. The application of empirical results from the model will support decision-making to help businesses improve products and services as well as business management and development in the field of hotel services.

토픽모델링을 이용한 도시 분야 연구동향 분석 (An Analysis of the Research Trends for Urban Study using Topic Modeling)

  • 장선영;정승현
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.661-670
    • /
    • 2021
  • 연구동향은 시기별 연구주제에 대한 중요도 판단과 부족한 연구 분야를 파악하고 신규 분야를 발굴하는데 유용하게 활용될 수 있다. 본 연구에서는 인구집중과 도시화로 인해 다양한 문제가 발생하고 있는 도시공간을 대상으로 한 논문들을 대상으로 시기별 연구동향을 분석하였다. 이를 위해 2002년부터 2019년 사이에 게재된 한국학술지인용색인(KCI)에 등재된 논문의 초록을 대상으로 데이터마이닝 기법 중 하나인 토픽모델링 분석을 수행하였다. 토픽모델링은 전체 내용에서 일정한 패턴을 발견해낼 수 있는 알고리즘 기반의 텍스트마이닝 기법으로 방대한 문헌에서 주제를 찾아내고 군집하는데 용이하다. 본 연구에서는 키워드 빈도, 연도별 경향, 토픽 도출, 토픽별 군집, 토픽유형별 경향에 대한 분석을 실시하였다. 그 결과 먼저 도시재생 분야연구가 지속적으로 증가되고 있고 앞으로도 세부 주제가 확대될 수 있는 분야로 분석되었다. 그리고 도시재생 주제는 이제 정규 연구분야로 자리 잡고 있는 것으로 파악되었다. 반면, 개발/성장과 에너지/환경과 같은 주제는 정체기에 들어간 것으로 분석되었다. 본 연구는 국내 전체 도시분야 연구를 대상으로 데이터마이닝 기법인 토픽모델링을 이용하여 키워드 간 연관성과 경향을 함께 분석하였다는 데 의의가 있다.