• Title/Summary/Keyword: Topic Classification

Search Result 254, Processing Time 0.03 seconds

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

A Topic Classification System Based on Clue Expressions for Person-Related Questions and Passages (단서표현 기반의 인물관련 질의-응답문 문장 주제 분류 시스템)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.12
    • /
    • pp.577-584
    • /
    • 2015
  • In general, Q&A system retrieves passages by matching terms of a question in order to find an answer to the question. However it is difficult for Q&A system to find a correct answer because too many passages are retrieved and matching using terms is not enough to rank them according to their relevancy to a question. To alleviate this problem, we introduce a topic for a sentence, and adopt it for ranking in Q&A system. We define a set of person-related topic class and a clue expression which can indicate a topic of a sentence. A topic classification system proposed in this paper can determine a target topic for an input sentence by using clue expressions, which are manually collected from a corpus. We explain an architecture of the topic classification system and evaluate the performance of the components of this system.

Keyword Reorganization Techniques for Improving the Identifiability of Topics (토픽 식별성 향상을 위한 키워드 재구성 기법)

  • Yun, Yeoil;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.18 no.4
    • /
    • pp.135-149
    • /
    • 2019
  • Recently, there are many researches for extracting meaningful information from large amount of text data. Among various applications to extract information from text, topic modeling which express latent topics as a group of keywords is mainly used. Topic modeling presents several topic keywords by term/topic weight and the quality of those keywords are usually evaluated through coherence which implies the similarity of those keywords. However, the topic quality evaluation method based only on the similarity of keywords has its limitations because it is difficult to describe the content of a topic accurately enough with just a set of similar words. In this research, therefore, we propose topic keywords reorganizing method to improve the identifiability of topics. To reorganize topic keywords, each document first needs to be labeled with one representative topic which can be extracted from traditional topic modeling. After that, classification rules for classifying each document into a corresponding label are generated, and new topic keywords are extracted based on the classification rules. To evaluated the performance our method, we performed an experiment on 1,000 news articles. From the experiment, we confirmed that the keywords extracted from our proposed method have better identifiability than traditional topic keywords.

Comments Classification System using Topic Signature (Topic Signature를 이용한 댓글 분류 시스템)

  • Bae, Min-Young;Cha, Jeong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.774-779
    • /
    • 2008
  • In this work, we describe comments classification system using topic signature. Topic signature is widely used for selecting feature in document classification and summarization. Comments are short and have so many word spacing errors, special characters. We firstly convert comments into 7-gram. We consider the 7-gram as sentence. We convert the 7-gram into 3-gram. We consider the 3-gram as word. We select key feature using topic signature and classify new inputs by the Naive Bayesian method. From the result of experiments, we can see that the proposed method is outstanding over the previous methods.

Expansion of Topic Modeling with Word2Vec and Case Analysis (Word2Vec를 이용한 토픽모델링의 확장 및 분석사례)

  • Yoon, Sang Hun;Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.30 no.1
    • /
    • pp.45-64
    • /
    • 2021
  • Purpose The traditional topic modeling technique makes it difficult to distinguish the semantic of topics because the key words assigned to each topic would be also assigned to other topics. This problem could become severe when the number of online reviews are small. In this paper, the extended model of topic modeling technique that can be used for analyzing a small amount of online reviews is proposed. Design/methodology/approach The extended model of being proposed in this paper is a form that combines the traditional topic modeling technique and the Word2Vec technique. The extended model only allocates main words to the extracted topics, but also generates discriminatory words between topics. In particular, Word2vec technique is applied in the process of extracting related words semantically for each discriminatory word. In the extended model, main words and discriminatory words with similar words semantically are used in the process of semantic classification and naming of extracted topics, so that the semantic classification and naming of topics can be more clearly performed. For case study, online reviews related with Udo in Tripadvisor web site were analyzed by applying the traditional topic modeling and the proposed extension model. In the process of semantic classification and naming of the extracted topics, the traditional topic modeling technique and the extended model were compared. Findings Since the extended model is a concept that utilizes additional information in the existing topic modeling information, it can be confirmed that it is more effective than the existing topic modeling in semantic division between topics and the process of assigning topic names.

Building a Hierarchy of Product Categories through Text Analysis of Product Description (텍스트 분석을 통한 제품 분류 체계 수립방안: 관광분야 App을 중심으로)

  • Lim, Hyuna;Choi, Jaewon;Lee, Hong Joo
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.139-154
    • /
    • 2019
  • With the increasing use of smartphone apps, many apps are coming out in various fields. In order to analyze the current status and trends of apps in a specific field, it is necessary to establish a classification scheme. Various schemes considering users' behavior and characteristics of apps have been proposed, but there is a problem in that many apps are released and a fixed classification scheme must be updated according to the passage of time. Although it is necessary to consider many aspects in establishing classification scheme, it is possible to grasp the trend of the app through the proposal of a classification scheme according to the characteristic of the app. This research proposes a method of establishing an app classification scheme through the description of the app written by the app developers. For this purpose, we collected explanations about apps in the tourism field and identified major categories through topic modeling. Using only the apps corresponding to the topic, we construct a network of words contained in the explanatory text and identify subcategories based on the networks of words. Six topics were selected, and Clauset Newman Moore algorithm was applied to each topic to identify subcategories. Four or five subcategories were identified for each topic.

An Automated Topic Specific Web Crawler Calculating Degree of Relevance (연관도를 계산하는 자동화된 주제 기반 웹 수집기)

  • Seo Hae-Sung;Choi Young-Soo;Choi Kyung-Hee;Jung Gi-Hyun;Noh Sang-Uk
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.155-167
    • /
    • 2006
  • It is desirable if users surfing on the Internet could find Web pages related to their interests as closely as possible. Toward this ends, this paper presents a topic specific Web crawler computing the degree of relevance. collecting a cluster of pages given a specific topic, and refining the preliminary set of related web pages using term frequency/document frequency, entropy, and compiled rules. In the experiments, we tested our topic specific crawler in terms of the accuracy of its classification, crawling efficiency, and crawling consistency. First, the classification accuracy using the set of rules compiled by CN2 was the best, among those of C4.5 and back propagation learning algorithms. Second, we measured the classification efficiency to determine the best threshold value affecting the degree of relevance. In the third experiment, the consistency of our topic specific crawler was measured in terms of the number of the resulting URLs overlapped with different starting URLs. The experimental results imply that our topic specific crawler was fairly consistent, regardless of the starting URLs randomly chosen.

  • PDF

Comments Classification System using Support Vector Machines and Topic Signature (지지 벡터 기계와 토픽 시그너처를 이용한 댓글 분류 시스템 언어에 독립적인 댓글 분류 시스템)

  • Bae, Min-Young;En, Ji-Hyun;Jang, Du-Sung;Cha, Jeong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.263-266
    • /
    • 2009
  • Comments are short and not use spacing words or comma more than general document. We convert the 7-gram into 3-gram and select key features using topic signature. Topic signature is widely used for selecting features in document classification and summarization. We use the SVM(Support Vector Machines) as a classifier. From the result of experiments, we can see that the proposed method is outstanding over the previous methods. The proposed system can also apply to other languages.

  • PDF

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.