• 제목/요약/키워드: Topic

검색결과 4,682건 처리시간 0.028초

Too Much Information - Trying to Help or Deceive? An Analysis of Yelp Reviews

  • Hyuk Shin;Hong Joo Lee;Ruth Angelie Cruz
    • Asia pacific journal of information systems
    • /
    • 제33권2호
    • /
    • pp.261-281
    • /
    • 2023
  • The proliferation of online customer reviews has completely changed how consumers purchase. Consumers now heavily depend on authentic experiences shared by previous customers. However, deceptive reviews that aim to manipulate customer decision-making to promote or defame a product or service pose a risk to businesses and buyers. The studies investigating consumer perception of deceptive reviews found that one of the important cues is based on review content. This study aims to investigate the impact of the information amount of review on the review truthfulness. This study adopted the Information Manipulation Theory (IMT) as an overarching theory, which asserts that the violations of one or more of the Gricean maxim are deceptive behaviors. It is regarded as a quantity violation if the required information amount is not delivered or more information is delivered; that is an attempt at deception. A topic modeling algorithm is implemented to reveal the distribution of each topic embedded in a text. This study measures information amount as topic diversity based on the results of topic modeling, and topic diversity shows how heterogeneous a text review is. Two datasets of restaurant reviews on Yelp.com, which have Filtered (deceptive) and Unfiltered (genuine) reviews, were used to test the hypotheses. Reviews that contain more diverse topics tend to be truthful. However, excessive topic diversity produces an inverted U-shaped relationship with truthfulness. Moreover, we find an interaction effect between topic diversity and reviews' ratings. This result suggests that the impact of topic diversity is strengthened when deceptive reviews have lower ratings. This study contributes to the existing literature on IMT by building the connection between topic diversity in a review and its truthfulness. In addition, the empirical results show that topic diversity is a reliable measure for gauging information amount of reviews.

토픽모델을 활용한 명문대 재학생의 학벌에 관한 인식 분석 (A Prestigious University Students' Perceptions of their Educational Attainment by a Topic model)

  • 정영선;이승연
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.503-512
    • /
    • 2024
  • 이 연구는 한국 사회에서 명문대로 분류되는 한 대학의 학생이 작성한 학벌에 대한 글쓰기 과제를 분석하여 이들이 가진 학벌에 대한 인식을 확인하고 내재한 의미를 분류한 연구이다. 분석에서 활용한 방법은 토픽 모델 중 잠재 디리클레 할당 방법으로 총 172편의 문서를 분석한 후 각 토픽에서 빈출한 키워드가 자주 등장하는 문서를 중심으로 학생의 인식을 탐색하였다. 분석 결과 도출한 토픽은 학벌의 순기능(토픽 1), 양날의 검(토픽 2), 권력공동체(토픽 3), 승리의 징표(토픽 4), 학벌의 역기능(토픽 5)의 다섯 가지이다. 각 토픽에서 가장 빈번하게 제시되는 단어를 정리하면 다음과 같다. 토픽 1에서는 '개인', '지위', '수단'이, 토픽 2는 '정의(定義)', '학교', '의미'가, 토픽 3은 '사람', '출신', '권력'이, 토픽 4는 '대학(교)', '능력', '노력'이, 토픽 5는 '학력', '우리나라', '출신'이었다. 이상의 분석을 통해 우리는 명문대 학생이 학벌을 논할 때 계급과 학벌 공동체, 사회와의 관련성을 통하여 계급재생산을 고려하지만 인종 및 민족와 같이 학벌에 영향을 미치는 기타 요인에 대하여는 크게 관심을 두지 않고 있음을 확인하였다. 앞으로의 관련 강의에서 보다 다양한 요인과 학벌의 관련성을 다룰 필요가 있다.

R&D Perspective Social Issue Packaging using Text Analysis

  • Wong, William Xiu Shun;Kim, Namgyu
    • 한국IT서비스학회지
    • /
    • 제15권3호
    • /
    • pp.71-95
    • /
    • 2016
  • In recent years, text mining has been used to extract meaningful insights from the large volume of unstructured text data sets of various domains. As one of the most representative text mining applications, topic modeling has been widely used to extract main topics in the form of a set of keywords extracted from a large collection of documents. In general, topic modeling is performed according to the weighted frequency of words in a document corpus. However, general topic modeling cannot discover the relation between documents if the documents share only a few terms, although the documents are in fact strongly related from a particular perspective. For instance, a document about "sexual offense" and another document about "silver industry for aged persons" might not be classified into the same topic because they may not share many key terms. However, these two documents can be strongly related from the R&D perspective because some technologies, such as "RF Tag," "CCTV," and "Heart Rate Sensor," are core components of both "sexual offense" and "silver industry." Thus, in this study, we attempted to discover the differences between the results of general topic modeling and R&D perspective topic modeling. Furthermore, we package social issues from the R&D perspective and present a prototype system, which provides a package of news articles for each R&D issue. Finally, we analyze the quality of R&D perspective topic modeling and provide the results of inter- and intra-topic analysis.

단서표현 기반의 인물관련 질의-응답문 문장 주제 분류 시스템 (A Topic Classification System Based on Clue Expressions for Person-Related Questions and Passages)

  • 이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권12호
    • /
    • pp.577-584
    • /
    • 2015
  • 일반적으로 질의응답 시스템은 입력된 질문에 대한 정답을 찾기 위해 질문과 관련된 문서 또는 단락 단위의 검색을 수행한다. 그렇지만 단어 기반의 검색만으로는 정답을 포함하는 단락을 찾기 어려운 경우가 있다. 본 논문에서는 이러한 문제를 각 문장이 가지고 있는 주제를 통해 해결할 수 있다고 판단하고 이를 위한 질의-응답문의 주제 분류 시스템에 대해 연구하였다. 이러한 시스템을 위해 필요한 인물과 관련한 주제 유형을 소개하고, 주제를 찾기 위한 단서표현을 정의하였다. 또한 단서표현기반으로 문장의 주제를 파악하는 시스템의 구성에 대해 소개하고, 이 시스템의 구성요소들에 대한 성능 평가를 수행하였다.

Topic Modeling and Sentiment Analysis of Twitter Discussions on COVID-19 from Spatial and Temporal Perspectives

  • AlAgha, Iyad
    • Journal of Information Science Theory and Practice
    • /
    • 제9권1호
    • /
    • pp.35-53
    • /
    • 2021
  • The study reported in this paper aimed to evaluate the topics and opinions of COVID-19 discussion found on Twitter. It performed topic modeling and sentiment analysis of tweets posted during the COVID-19 outbreak, and compared these results over space and time. In addition, by covering a more recent and a longer period of the pandemic timeline, several patterns not previously reported in the literature were revealed. Author-pooled Latent Dirichlet Allocation (LDA) was used to generate twenty topics that discuss different aspects related to the pandemic. Time-series analysis of the distribution of tweets over topics was performed to explore how the discussion on each topic changed over time, and the potential reasons behind the change. In addition, spatial analysis of topics was performed by comparing the percentage of tweets in each topic among top tweeting countries. Afterward, sentiment analysis of tweets was performed at both temporal and spatial levels. Our intention was to analyze how the sentiment differs between countries and in response to certain events. The performance of the topic model was assessed by being compared with other alternative topic modeling techniques. The topic coherence was measured for the different techniques while changing the number of topics. Results showed that the pooling by author before performing LDA significantly improved the produced topic models.

유튜브에 나타난 슬로우 패션의 빅데이터 분석 (A Study of Slow Fashion on YouTube Through Big Data Analysis)

  • 빈삼;염혜정
    • 패션비즈니스
    • /
    • 제27권4호
    • /
    • pp.50-66
    • /
    • 2023
  • The purpose of this study was to examine the word distribution and topic distribution of slow fashion appearing on YouTube in detail and identify the characteristics and aspects related to fashion design through big data analysis and content analysis methods. The specific research results were as follows. First, in the results of the word distribution analysis, "item" appeared the most, 203 times. Also, "one-piece" was a point to pay attention to, as the item had the highest frequency. Second, a total of 5 topics were defined in the topic distribution analysis: topic 1 was "vintage products," topic 2 was "fashion items," topic 3 was "eco-friendly," topic 4 was "life quality emphasis," and topic 5 was "prudent consumption." Third, looking at the relationship between word distribution and topic distribution above, Korean slow fashion on YouTube was actively selecting related design elements that express vintage images in clothing life regardless of trends. In addition, there was a tendency to pursue various basic and high-quality items. Other than those findings, basic items tended to be reinterpreted in various ways through styling methods matched to the vintage image. Lastly, the tendency of slow and small-volume production appeared to emphasize handicrafts and the cultural values of fashion products.

사용자 프로파일을 이용한 개인화된 토픽맵 랭킹 알고리즘 (Personalized Topic map Ranking Algorithm using the User Profile)

  • 박정우;이상훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권8호
    • /
    • pp.522-528
    • /
    • 2008
  • 토픽맵에서 사용자의 토픽 선택에 따라 제공되는 정보는 개별 사용자의 관심과 배경지식이 고려되지 않고 최초 도메인 전문가에 의해 구축된 토픽맵 상의 토픽(Topic)과 연관되는 관계(Association), 자원(Occurrence)만을 이용하여 사용자에게 토픽맵 정보를 제공하고 있다. 이에 토픽맵은 개인화된 정보제공 측면의 단점을 보완하고자 개별 사용자를 위한 개인화 기능으로 개인 선호항목 설정, 필터링(Filtering), 범위제한(Scope) 등 사용자가 직접 관심정보를 사전에 설정하는 기능을 제공하고 있으나 토픽맵 사용자를 위한 개인화 측면에서 만족스럽지 못하다. 따라서 본 논문에서는 특정 도메인 토픽맵에서 사용자가 원하는 개인화된 정보를 제공하기 위해 사용자 클릭정보 수집을 통한 프로파일 정보와 이를 이용한 토픽 선호도 백터(Topic Preference Vector), 토픽맵 지식층의 기본요소인 토픽(Topic)과 관계(Association)를 이용한 개인화된 토픽맵 랭킹 알고리즘(PTR)을 제안한다. 사용자는 PTR 알고리즘을 이용하여 개인 선호도가 고려되어 랭킹된 토픽맵 정보를 제공받을 수 있게 됨으로써 개인화된 정보 제공 측면에서의 성능 향상을 가져올 수 있는 장점을 가진다.

독후감 텍스트의 토픽모델링 적용에 관한 탐색적 연구 (A Study on the Application of Topic Modeling for the Book Report Text)

  • 이수상
    • 한국도서관정보학회지
    • /
    • 제47권4호
    • /
    • pp.1-18
    • /
    • 2016
  • 이 연구는 독후감 텍스트의 주제분석에 토픽모델링의 활용방안을 탐색하는 것을 목적으로 하고 있다. 텍스트의 주제분석 방안으로서 토픽모델링 분석방법을 이해하고, R에서 제공하는 "topicmodels" 패키지의 LDA 함수를 사용하여 23건의 사례 독후감 텍스트들을 대상으로 실제의 분석작업을 수행하였다 토픽모델링 분석결과 16개의 토픽들을 추출하였고 토픽과 구성 단어들의 관계에서 토픽 네트워크 사례 독후감과 토픽들의 관계에서 독후감 네트워크를 구성하였다. 이후 토픽 네트워크와 독후감 네트워크를 대상으로 중심성 분석을 수행하였으며 분석결과는 다음과 같다. 첫째 16개의 토픽들이 1개의 컴포넌트를 가지는 네트워크로 나타났다. 이것은 16개 토픽들이 상호 연관되어 있다는 것을 의미한다. 둘째, 독후감 네트워크에서는 연결정도 중심성이 높은 독후감들과 낮은 독후감들로 구분이 되었다. 전자의 독후감들은 다른 독후감들과 주제적으로 유사성을 가지며 후자의 독후감들은 다른 독후감들과 주제적으로 상이성을 가지는 것으로 해석하였다. 토픽모델링의 결과를 네트워크 분석과 결합함으로써 독후감의 주제파악에 유용한 결과들을 얻게 되었다.

LDA 알고리즘을 이용한 프랜차이즈 연구 동향에 대한 토픽모델링 분석 (Topic Modeling Analysis of Franchise Research Trends Using LDA Algorithm)

  • 양회창
    • 한국프랜차이즈경영연구
    • /
    • 제12권4호
    • /
    • pp.13-23
    • /
    • 2021
  • Purpose: This study aimed to derive clues for the franchise industry to overcome difficulties such as various legal regulations and social responsibility demands and to continuously develop by analyzing the research trends related to franchises published in Korea. Research design, data and methodology: As a result of searching for 'franchise' in ScienceON, abstracts were collected from papers published in domestic academic journals from 1994 to June 2021. Keywords were extracted from the abstracts of 1,110 valid papers, and after preprocessing, keyword analysis, TF-IDF analysis, and topic modeling using LDA algorithm, along with trend analysis of the top 20 words in TF-IDF by year group was carried out using the R-package. Results: As a result of keyword analysis, it was found that businesses and brands were the subjects of research related to franchises, and interest in service and satisfaction was considerable, and food and coffee were prominently studied as industries. As a result of TF-IDF calculation, it was found that brand, satisfaction, franchisor, and coffee were ranked at the top. As a result of LDA-based topic modeling, a total of 12 topics including "growth strategy" were derived and visualized with LDAvis. On the other hand, the areas of Topic 1 (growth strategy) and Topic 9 (organizational culture), Topic 4 (consumption experience) and Topic 6 (contribution and loyalty), Topic 7 (brand image) and Topic 10 (commercial area) overlap significantly. Finally, the trend analysis results for the top 20 keywords with high TF-IDF showed that 10 keywords such as quality, brand, food, and trust would be more utilized overall. Conclusions: Through the results of this study, the direction of interest in the franchise industry was confirmed, and it was found that it was necessary to find a clue for continuous growth through research in more diverse fields. And it was also considered an important finding to suggest a technique that can supplement the problems of topic trend analysis. Therefore, the results of this study show that researchers will gain significant insights from the perspectives related to the selection of research topics, and practitioners from the perspectives related to future franchise changes.

Word2Vec를 이용한 토픽모델링의 확장 및 분석사례 (Expansion of Topic Modeling with Word2Vec and Case Analysis)

  • 윤상훈;김근형
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.45-64
    • /
    • 2021
  • Purpose The traditional topic modeling technique makes it difficult to distinguish the semantic of topics because the key words assigned to each topic would be also assigned to other topics. This problem could become severe when the number of online reviews are small. In this paper, the extended model of topic modeling technique that can be used for analyzing a small amount of online reviews is proposed. Design/methodology/approach The extended model of being proposed in this paper is a form that combines the traditional topic modeling technique and the Word2Vec technique. The extended model only allocates main words to the extracted topics, but also generates discriminatory words between topics. In particular, Word2vec technique is applied in the process of extracting related words semantically for each discriminatory word. In the extended model, main words and discriminatory words with similar words semantically are used in the process of semantic classification and naming of extracted topics, so that the semantic classification and naming of topics can be more clearly performed. For case study, online reviews related with Udo in Tripadvisor web site were analyzed by applying the traditional topic modeling and the proposed extension model. In the process of semantic classification and naming of the extracted topics, the traditional topic modeling technique and the extended model were compared. Findings Since the extended model is a concept that utilizes additional information in the existing topic modeling information, it can be confirmed that it is more effective than the existing topic modeling in semantic division between topics and the process of assigning topic names.