• Title/Summary/Keyword: Top-fixed

Search Result 230, Processing Time 0.03 seconds

Analytical Evaluation of Airborne Noise for the Building Structure' on Railway Transportation Systems (철도부지 상부 입체 건축물의 공기전달음 소음 예측)

  • Yeon, Jun-Oh;Kim, Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1096-1102
    • /
    • 2013
  • The useful practical land shall be reserved when an artificial land covers the railway and road. However, the problem is that since the artificial land places directly on the top of noise sources likely on the railway and road there will arise the weak points, noise and vibration. On this study based on creating the artificial land on the top of a railway vehicle base and placing a tenement on that land, it was comprehended the noise influence from the railway car through the simulation. In order to secure the input value for the simulation, at first measured the noise condition of the railway station building and the railway vehicle base. The output value for the railway station building (place A) was around (53.6~57.6) dB(A), the equivalent continuous sound level for an hour, and for the railway station building (place B) it was around (63.7~68.9) dB. The maximum outdoor noise of the tenement on the artificial land was measured as 64.1 dB(A) under the fixed condition on the simulation modeling. The built purpose of placing the artificial land to prevent the noise influence from the railway met the expectation to be less influenced on the tenement. Rather, because of placing the artificial land the noise level on the lower space could be increased so there requires having a noise control.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

A Study on the Minimization of the Refrigeration Power Consumptions Through the Determination of Demethanizer Top Pressure in the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정에서 최적의 탈메탄탑의 운전압력 결정을 통한 냉동 소요동력 최소화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1032-1037
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream was partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream was cooled further and partially condensed through a turbo-expander. The power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream was cooled by Joule-Thomson expansion valve and was fed to the middle section of the demethanizer. Recovery percent of ethane for feed natural was set to 80% and methane to ethane molar ratio was fixed as 0.0119. On the other hand, some of the cold heat could be recovered by splitting the feed stream and by exchanging heat with side reboiler in order to reduce the heat duty in the propane refrigeration cycle.

Power Disturbance Detection using the Inflection Point Estimation (변곡점 추정을 이용한 전력선 신호의 이상현상 검출)

  • Iem, Byeong-Gwan
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.710-715
    • /
    • 2021
  • Power line signal can show disturbances due to various causes. Typical anomalies are temporary sag/swell of the amplitude, flat topped signal, and harmonic distortions. The disturbances need to be detected and treated properly for the quality of the power signal. In this study, the power disturbances are detected using the inflection points (IP). The inflection points are defined as points where local maxima/minima or the slope changes occur. The power line signal has a fixed IP pattern since it is basically sinusoidal, and it may have additional inflection points if there is any disturbance. The disturbance is detected by comparing the IP patterns between the normal signal and distorted signal. In addition, by defining a cost function, the time instant where the disturbance happens can be decided. The computer simulation shows that the proposed method is useful for the detection of various disturbances. The simple sag or swell signal only shows the amplitude changes at the detected inflection points. However, the flat top signal and harmonically distorted signal produce additional inflection points and large values in the cost function. These results can be exploited for the further processing of disturbance classification.

The characteristics of gasification for combustible waste

  • Na, Jae-Ik;Park, So-Jin;Kim, Yong-Koo;Lee, Jae-Goo;Kim, Jae-Ho
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.227-234
    • /
    • 2002
  • With the increasing environmental consideration and stricter regulations, gasification of waste is considered to be more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste mixed with plastic and cellulosic materials was performed in the fixed bed gasifier to investigate the gasification behavior with the operating conditions. Waste pelletized with a diameter of 2~3cm and 5cm of length was gasified at the temperature range of 1100~145$0^{\circ}C$. It was shown that the composition of H$_2$ was in the range of 30~40% and CO 15~30% depending upon oxygen/waste ratio. Casification of waste due to thermoplastic property from mixed plastic melting and thermal cracking shows a prominent difference from that of coal or coke. It was desirable to maintain the top temperature up to foot to ensure the mass transfer and uniform reaction through the packed bed. As the bed height was increased, the formation of H$_2$ and CO was increased whilst $CO_2$ decreased by the char-$CO_2$ reaction and plastic cracking. From the experimental results, the cold gas efficiency was around 61% and heating values of product gases were in the range of 2800~3200㎉/Nm3.

  • PDF

Ellipse-Stacking Methods for Image Reconstruction in Compton Cameras (컴프턴 카메라 영상재구성을 위한 타원 누적법)

  • Lee, Mi-No;Lee, Soo-Jin;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.520-529
    • /
    • 2007
  • An efficient method for implementing image reconstruction algorithms for Compton cameras is presented. Since Compton scattering formula establishes a cone surface from which the incident photon must have originated, it is crucial to implement a computationally efficient cone-surface integration method for image reconstruction. In this paper we assume that a cone is made up of a series of ellipses (or circles) stacked up one on top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we propose a new method using a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the cone surface integral can be performed by simply accumulating the circles along the cone axis. To reduce the computational cost of tracing circles, only one of the circles in the cone is traced and the rest are determined by using simple trigonometric ratios. For our experiments, we used the three different schemes for tracing ellipses; (i) using the samples generated by the ellipse equation, (ii) using the fixed number of samples along a circle on the imaginary plane, and (iii) using the fixed sampling interval along a circle on the imaginary plane. We then compared performance of the above three methods by applying them to the two reconstruction algorithms - the simple back-projection method and the expectation-maximization algorithm. The experimental results demonstrate that our proposed methods (ii) and (iii) using imaginary planes significantly improve reconstruction accuracy as well as computational efficiency.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet (열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Song, Min-A;Kim, Sung-Hwan;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

Evaluation of Drilled Shaft's End Condition by Impact-Echo Method (충격반향기법에 의한 현장타설 말뚝기초의 선단 조건 평가)

  • Kim, Dong-Soo;Kim, Hyung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • Experimental model studies were carried out to evaluate the end condition for drilled shafts by applying elastic impact on the top of the shaft, which is one of the various methods using stress waves. Typical impact responses corresponding to the various end conditions including free, fixed, rock-socketed, and soft-bottom with good and poor side contact conditions, were investigated. In order to simulate these renditions, mock-up shaft models made of cement mortar were used. Small-scale laboratory experiments were also performed, and field tests were carried out for the shafts that were socketed into weathered rock. It is found that the rock-socketed condition and depth of penetration into rock ran be identified from the reflection at the interface between the soil and rock in the waveform. The soft bottom rendition can be identified, only when the side contact between shaft and surrounding rock is poor, whereas it cannot be identified when the side contact is good because the waveform is similar to that of fixed end rendition.