• Title/Summary/Keyword: Top-K mining

Search Result 94, Processing Time 0.023 seconds

Analysis of Overseas Research Trends Related to Artificial Intelligence (AI) in Elementary, Middle and High School Education (초·중·고 교육분야의 인공지능(AI) 관련 해외 연구동향 분석)

  • Jung, Young-Joo;Kim, Hea-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.3
    • /
    • pp.313-334
    • /
    • 2021
  • This study aimed to analyze AI research trends related to elementary, middle, and high school education. To this end, the related literature was collected from the SCOPUS database and the publication period of the collected literature was from 1974 to March 2021, with 154 journal papers and 571 conference papers. Research trends were analyzed based on the co-occurrences analysis technique of 4,521 words of author keyword and index keyword included in these papers. As a result of the analysis, big data, data mining, data science and deep learning were found as the latest research trends with machine learning and there was a difference between elementary, middle and high school education. It can be seen that elementary school had a lot of robot-related research, middle school had a lot of game and data-related research, and high school had various and in-depth research. In discussion, we mapped the top 50 words common to elementary, middle, and high schools with the 'Artificial Intelligence Basics' curriculum of Korean Government and '5 Big Ideas' of the United States Government so that AI research can be viewed at a glance.

Arab Spring Effects on Meanings for Islamist Web Terms and on Web Hyperlink Networks among Muslim-Majority Nations: A Naturalistic Field Experiment

  • Danowski, James A.;Park, Han Woo
    • Journal of Contemporary Eastern Asia
    • /
    • v.13 no.2
    • /
    • pp.15-39
    • /
    • 2014
  • This research conducted a before/after naturalistic field experiment, with the early Arab Spring as the treatment. Compared to before the early Arab Spring, after the observation period the associations became stronger among the Web terms: 'Jihad, Sharia, innovation, democracy and civil society.' The Western concept of civil society transformed into a central Islamist ideological component. At another level, the inter-nation network based on Jihad-weighted Web hyperlinks between pairs of 46 Muslim Majority (MM) nations found Iran in one of the top two positions of flow betweenness centrality, a measure of network power, both before and after early Arab Spring. In contrast, Somalia, UAE, Egypt, Libya, and Sudan increased most in network flow betweenness centrality. The MM 'Jihad'-centric word co-occurrence network more than tripled in size, and the semantic structure more became entropic. This media "cloud" perhaps billowed as Islamist groups changed their material-level relationships and the corresponding media representations of Jihad among them changed after early Arab Spring. Future research could investigate various rival explanations for this naturalistic field experiment's findings.

How to Promote the Korean Journal of Child Studies to an International Journal (아동학회지를 어떻게 국제화시킬 것인가?)

  • Huh, Sun
    • Korean Journal of Child Studies
    • /
    • v.37 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • Objective: It aimed at proposing the Korean Journal of Child Studies' strategy to be promoted to international journal based on the style and format of scholarly journals and journal metrics. Methods: The review of the journal in not only print version, but also an online version was done from the perspective of style and format. The total citation and impact factor were manually calculated from Web of Science Core Collection. Results: More professional level manuscript editing is required for maintaining the consistency of the style and format. The verso page and back matters should be improved to international level. Journal homepage should be reconstructed by adopting digital standards for the journal, including journal article tag suite, CrossMark, FundRef, ORCID, and text and data mining. To become an international journal, transformation into English journal and deposition to PubMed Central is mandatory. Conclusion: Since the editor's and society members' performance is top-notch, it will be possible to promote the journal up to international level soon. Society should guarantee the term of editor for enough time and support her with full cost and complete consent.

Study on Emerging Technologies in Electric Power Industry (전력산업 미래 유망기술 발굴 방법론 연구)

  • Park, Sooman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.317-325
    • /
    • 2016
  • In recent years, the U.S, Japan, Europe and other developed countries are strategically developing technologies in order to prepare for paradigm shift affecting the electric power industry in a preemptive way. In particular, a chance for new business models and innovation in the electric power industry would rapidly increase with convergence of various technologies including Information and communication technologies. This study gathered up the theories and methodologies, and sorted out emerging technologies for the electric power industry with those theories. In order to find the emerging technologies, first, we identified the possible key issues of the electric power industry in the future using four mining techniques such as STEEP. Second, we drew agenda related with each key issue. Third, we organized candidates of the emerging technologies for solving the agenda and set the priority after evaluating the possibility of technical innovation and business. Finally, we selected the top fourteen of emerging technologies and assessed their feasibility. This study has a methodological significance because the emerging technologies were developed with a market-oriented approach rather than technical-push one that has been primarily used in another studies. The results of this study are able to be used in establishment of technology policy and R&D planning in the electric power industry.

Top-down Hierarchical Clustering using Multidimensional Indexes (다차원 색인을 이용한 하향식 계층 클러스터링)

  • Hwang, Jae-Jun;Mun, Yang-Se;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.367-380
    • /
    • 2002
  • Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.

Issue tracking and voting rate prediction for 19th Korean president election candidates (댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측)

  • Seo, Dae-Ho;Kim, Ji-Ho;Kim, Chang-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.199-219
    • /
    • 2018
  • With the everyday use of the Internet and the spread of various smart devices, users have been able to communicate in real time and the existing communication style has changed. Due to the change of the information subject by the Internet, data became more massive and caused the very large information called big data. These Big Data are seen as a new opportunity to understand social issues. In particular, text mining explores patterns using unstructured text data to find meaningful information. Since text data exists in various places such as newspaper, book, and web, the amount of data is very diverse and large, so it is suitable for understanding social reality. In recent years, there has been an increasing number of attempts to analyze texts from web such as SNS and blogs where the public can communicate freely. It is recognized as a useful method to grasp public opinion immediately so it can be used for political, social and cultural issue research. Text mining has received much attention in order to investigate the public's reputation for candidates, and to predict the voting rate instead of the polling. This is because many people question the credibility of the survey. Also, People tend to refuse or reveal their real intention when they are asked to respond to the poll. This study collected comments from the largest Internet portal site in Korea and conducted research on the 19th Korean presidential election in 2017. We collected 226,447 comments from April 29, 2017 to May 7, 2017, which includes the prohibition period of public opinion polls just prior to the presidential election day. We analyzed frequencies, associative emotional words, topic emotions, and candidate voting rates. By frequency analysis, we identified the words that are the most important issues per day. Particularly, according to the result of the presidential debate, it was seen that the candidate who became an issue was located at the top of the frequency analysis. By the analysis of associative emotional words, we were able to identify issues most relevant to each candidate. The topic emotion analysis was used to identify each candidate's topic and to express the emotions of the public on the topics. Finally, we estimated the voting rate by combining the volume of comments and sentiment score. By doing above, we explored the issues for each candidate and predicted the voting rate. The analysis showed that news comments is an effective tool for tracking the issue of presidential candidates and for predicting the voting rate. Particularly, this study showed issues per day and quantitative index for sentiment. Also it predicted voting rate for each candidate and precisely matched the ranking of the top five candidates. Each candidate will be able to objectively grasp public opinion and reflect it to the election strategy. Candidates can use positive issues more actively on election strategies, and try to correct negative issues. Particularly, candidates should be aware that they can get severe damage to their reputation if they face a moral problem. Voters can objectively look at issues and public opinion about each candidate and make more informed decisions when voting. If they refer to the results of this study before voting, they will be able to see the opinions of the public from the Big Data, and vote for a candidate with a more objective perspective. If the candidates have a campaign with reference to Big Data Analysis, the public will be more active on the web, recognizing that their wants are being reflected. The way of expressing their political views can be done in various web places. This can contribute to the act of political participation by the people.

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.

Composition of Rare Earth Elements in Northeast Pacific Surface Sediments, and their Potential as Rare Earth Elements Resources (북동태평양 Clarion-Clipperton 해역 표층 퇴적물의 희토류 조성 및 희토류 광상으로서의 잠재성)

  • Seo, Inah;Pak, Sang Joon;Kiseong, Hyeong;Kong, Gee-Soo;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.383-394
    • /
    • 2014
  • The surface sediments from the manganese nodule exploration area of Korea in the Clarion-Clipperton fracture zone were investigated to understand the resource potential of and emplacement mechanism for rare earth elements (REEs). The sediments are categorized into three lithological units (Unit I, II and III from top to bottom), but into two groups (Unit I/II and Unit III) based on the distribution pattern of REEs. The distribution pattern of REEs in Unit I/II is similar to that of Post-Archean Australian Shale (PAAS), but shows a negative Ce anomaly and enrichment in heavy REEs (HREEs). In Unit III, the HREE enrichment and Ce anomaly is much more remarkable than Unit I/II when normalized to PAAS, which are interpreted as resulting from the absorption of REEs from seawater by Fe oxyhydroxides that were transported along the buoyant plume from remotely-located hydrothermal vents. It is supported by the PAAS-normalized REE pattern of Unit III which is similar to those of seawater and East Pacific Rise sediments. Meanwhile, the PAAS-normalized REE pattern of Unit I/II is explained by the 4:1 mixing of terrestrial eolian sediment and Unit III from each, indicating the much smaller contribution of hydrothermal origin material to Unit I/II. The studied sediments have the potentiality of a low-grade and large tonnage REE resource. However, the mining of REE-bearing sediment needs a large size extra collecting, lifting and treatment system to dress and refine low-grade sediments if the sediment is exploited with manganese nodules. It is economically infeasible to develop low-grade REE sediments at this moment in time because the exploitation of REE-bearing sediments with manganese nodules increase the mining cost.

A Study on the Financial Strength of Households on House Investment Demand (가계 재무건전성이 주택투자수요에 미치는 영향에 관한 연구)

  • Rho, Sang-Youn;Yoon, Bo-Hyun;Choi, Young-Min
    • Journal of Distribution Science
    • /
    • v.12 no.4
    • /
    • pp.31-39
    • /
    • 2014
  • Purpose - This study investigates the following two issues. First, we attempt to find the important determinants of housing investment and to identify their significance rank using survey panel data. Recently, the expansion of global uncertainty in the real estate market has directly and indirectly influenced the Korean housing market; households demonstrate a sensitive reaction to changes in that market. Therefore, this study aims to draw conclusions from understanding how the impact of financial strength of the household is related to house investment. Second, we attempt to verify the effectiveness of diverse indices of financial strength such as DTI, LTV, and PIR as measures to monitor the housing market. In the continuous housing market recession after the global crisis, the government places top priority on residence stability. However, the government still imposes forceful restraints on indices of financial strength. We believe this study verifies the utility of these regulations when used in the housing market. Research design, data, and methodology - The data source for this study is the "National Survey of Tax and Benefit" from 2007 (1st) to 2011 (5th) by the Korea Institute of Public Finance. Based on this survey data, we use panel data of 3,838 households that have been surveyed continuously for 5 years. We sort the base variables according to relevance of house investment criteria using the decision tree model (DTM), which is the standard decision-making model for data-mining techniques. The DTM method is known as a powerful methodology to identify contributory variables for predictive power. In addition, we analyze how important explanatory variables and the financial strength index of households affect housing investment with the binary logistic multi-regressive model. Based on the analyses, we conclude that the financial strength index has a significant role in house investment demand. Results - The results of this research are as follows: 1) The determinants of housing investment are age, consumption expenditures, income, total assets, rent deposit, housing price, habits satisfaction, housing scale, number of household members, and debt related to housing. 2) The impact power of these determinants has changed more or less annually due to economic situations and housing market conditions. The level of consumption expenditure and income are the main determinants before 2009; however, the determinants of housing investment changed to indices of the financial strength of households, i.e., DTI, LTV, and PIR, after 2009. 3) Most of all, since 2009, housing loans has been a more important variable than the level of consumption in making housing market decisions. Conclusions - The results of this research show that sound financing of households has a stronger effect on housing investment than reduced consumption expenditures. At the same time, the key indices that must be monitored by the government under economic emergency conditions differ from those requiring monitoring under normal market conditions; therefore, political indices to encourage and promote the housing market must be divided based on market conditions.

Mining Proteins Associated with Oral Squamous Cell Carcinoma in Complex Networks

  • Liu, Ying;Liu, Chuan-Xia;Wu, Zhong-Ting;Ge, Lin;Zhou, Hong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4621-4625
    • /
    • 2013
  • The purpose of this study was to construct a protein-protein interaction (PPI) network related to oral squamous cell carcinoma (OSCC). Each protein was ranked and those most associated with OSCC were mined within the network. First, OSCC-related genes were retrieved from the Online Mendelian Inheritance in Man (OMIM) database. Then they were mapped to their protein identifiers and a seed set of proteins was built. The seed proteins were expanded using the nearest neighbor expansion method to construct a PPI network through the Online Predicated Human Interaction Database (OPHID). The network was verified to be statistically significant, the score of each protein was evaluated by algorithm, then the OSCC-related proteins were ranked. 38 OSCC related seed proteins were expanded to 750 protein pairs. A protein-protein interaction nerwork was then constructed and the 30 top-ranked proteins listed. The four highest-scoring seed proteins were SMAD4, CTNNB1, HRAS, NOTCH1, and four non-seed proteins P53, EP300, SMAD3, SRC were mined using the nearest neighbor expansion method. The methods shown here may facilitate the discovery of important OSCC proteins and guide medical researchers in further pertinent studies.