• 제목/요약/키워드: Tooth micro-modification

검색결과 10건 처리시간 0.024초

풍력터빈용 고속단 헬리컬 기어의 치형 최적화에 관한 연구 (A Study on Optimization of Tooth Micro-geometry for Wind Turbine High Speed Stage Helical Gear Pair)

  • 조성민;이도영;김래성;조상필;류성기
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.15-20
    • /
    • 2014
  • The wind industry grew in the first decade of the 21st century at rates consistently above 20% a year. For wind turbine, gearbox failure can be extremely costly in terms of repair costs, replacement parts, and in lost power production due to downtime. In this paper, gear tooth micro-modification for the high speed stage was used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox was firstly modeled in a software, and then the various combined tooth modification were presented, and the prediction of transmission under the loaded torque for the helical gear pair was investigated, the normal load distribution and root stress were also obtained and compared before and after tooth modification under one torque. The simulation results showed that the transmission error and normal load distribution under the load can be minimized by the appropriate tooth modification. It is a good approach where the simulated result is used to improve the design before the prototype is available for the test.

기어미션용 실증적 기어치형수정에 관한 연구 (Study on Empirical Gear Profile Micro-modifications for Gear Transmission)

  • 장기;왕주겐;류성기
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.54-62
    • /
    • 2017
  • When gears mesh, shock and noise are produced as results of tooth error and tooth deformation under load. Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. Gear tooth modification research plays a positive role in reducing TE and improving the design level and transmission performance of transmission systems. In high-precision manufacturing gear, gear tooth modification is also commonly used to reduce noise in practical applications. In order to study the accuracy of gear transmission, some empirical gear profile micro-modifications are introduced, and a helical gear pair is modeled and analyzed in RomaxDesigner software to investigate the utility of these modification methods. Some of these will be selected as experimental proposals for gear pairs, and these manufactured gears will be tested and compared in a semi-anechoic room later. The final purpose of this study is to find reasonable and convenient empirical formulae to facilitate improved gear production.

헬리컬 기어의 치형최적화에 관한 연구 (A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair)

  • 장기;강재화;류성기
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구 (Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit)

  • 장정환;진진;김동선;우위팅;류성기
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

2단 유성기어 감속기의 후부기어 치형수정에 관한 연구 (Study on Tooth Micro-geometry Optimization of Rear Gear Set in 2 Speed Planetary Gear Reducer)

  • 전민형;김래성;노승윤;진진;최창;류성기
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.1-6
    • /
    • 2017
  • Gear tooth micro-geometry modifications include the intentional removal of material from the gear teeth flanks, so that the shape is no longer a perfect involute. If the gear shapes are perfect, then the gear tooth meshing is better, therefore the gears will transmit input torque in a more efficient manner without the generation of high frequency engine fluctuation noise. In this paper, we study tooth micro-geometry optimization of rear gear set in 2 speed planetary gear reducers. Analysis revealed problems which are need of modification. Based on the results, tooth micro-geometry was used to deal with load distributions on the rear gear set.

플러그인 HEV용 변속기전달오차와 하중분포에 관한 연구 (Analytical Prediction of Transmission Error and Load Distribution for a Plugin HEV)

  • 장기;강재화;윤기백;류성기
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.116-121
    • /
    • 2012
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle(HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error(T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of gear tooth profile and lead modification, and the predictions of transmission error and load distribution are shown under one loaded torque for the 1st gear pair of HEV gearbox. The test is also obtained before tooth micro-modification under the torque. At last, the appropriate tooth modification is used to minimize the transmission error and load distribution under the loaded torque. It is a good approach which the simulated result is used to improve the design in order to minimize the radiation gear whine noise.

스퍼기어의 전달오차에 관한 연구 (Study on the Transmission Error Prediction for a Spur Gear Pair)

  • 장기;장정;주충강;왕진영;허철수;류성기
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.109-114
    • /
    • 2016
  • Nowadays, lower gear vibration and noise are necessary for drivers in automotive gearbox, which means that transmission gearbox should be optimized to avoid noise annoyance and fatigue before quantity production. Transmission error (T.E.) is the excitation factor that affects the noise level known as gear whine, and is also the dominant source of noise in the gear transmission system. In this paper, the research background, the definition of T.E. and gear micro-modification were firstly presented, and then different transmission errors of loaded torques for the spur gear pair were studied and compared by a commercial software. It was determined that the optimum gear micro-modification could be applied to optimize the transmission error of the loaded gear pair. In the future, a transmission test rig which is introduced in this paper is about to be used to study the T.E. after gear micro-geometry modification. And finally, the optimized modification can be verified by B&K testing equipment in the semi-anechoic room later.

트랙터 최종구동축용 복합유성기어 방식 감속기의 Micro-geometry를 이용한 전달 오차 및 치면 하중 분포 개선에 관한 연구 (A Study on the Improvement of Transmission Error and Tooth Load Distribution using Micro-geometry of Compound Planetary Gear Reducer for Tractor Final Driving Shaft)

  • 이남규;김용주;김완수;김연수;김택진;백승민;최용;김영근;최일수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.1-12
    • /
    • 2020
  • This study was to develop a simulation model of a compound planetary gear reducer for the final driving shaft using a gear analysis software (KISSsoft, Version 2017, KISSsoft AG, Switzerland). The aim of this study is to analyze transmission error and the tooth load distribution through micro-geometry using the simulation model. The tip and root relief were modified with Micro-geometry in the profile direction, and crowning was modified with Micro-geometry in the lead direction. The transmission error was analyzed using the PPTE (Peak to Peak Transmission Error) value, and the tooth load distribution was analyzed for the concentrated stress on the tooth surface. As a result of modifying tip and relief in the profile direction, the transmission error was reduced up to 40.7%. In the case of modifying crowning in the lead direction, the tooth load was more evenly distributed than before and decreased the stress on the tooth surface. After modifying the profile direction for the 1st and 2nd planetary gear train, the bending and contact safety factors were increased by 31.7% and 17%, and 18.3% and 12.5% respectively. Moreover, the bending and safety factors after modifying lead direction were increased by 59.5% and 32.7%, respectively for the 1st planetary gear train, and 59.6% and 43.6%, respectively for the 2nd planetary gear train. In future studies, the optimal design of a compound planetary gear reducer for the final driving shaft is needed considering both the transmission error and tooth load distribution.

5MW 풍력용 피치드라이브의 유성기어 Micro-geometry 최적화에 관한 연구 (A Study on Tooth Micro-geometry Optimization of Planetary Gear for 5MW Wind Turbine Pitch Drive)

  • 이인범;김동영;허철수;이도영;류성기
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.85-91
    • /
    • 2014
  • The rotation of a spindle unit must be accurate for high-quality machining and to improve the quality of the machine tools. Therefore, the proper measurement of the rotation accuracy and ensuring a proper analysis are very important. Separate processes are necessary because spindle errors and roundness errors associated with the test balls can both factor into the measured rotation error values. We used three methods to discern test ball errors and analyzed which could be deemed as the most proper technique in a test of the rotation accuracy of the main spindle of a machine tool.

하학 제 1 소구치의 3 차원 CT 영상 분할 및 정합 연구 (A Study on 3D CT Image Segmentation and Registration of Mandibular First Premolar)

  • 진경찬;전경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.175-176
    • /
    • 2006
  • The aim of the 3D medical imaging is to facilitate the creation of clinically usable image-based algorithm. Clinically usable imaging algorithm for image analysis requires a high degree of interaction to verify and correct results from registration algorithms, such as the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) which are the class libraries. ITK provides segmentation algorithms and VTK has powerful 3D visualization. However, to apply those libraries to the medical images such as Computerized Tomography (CT), the algorithm based on the interactive construction and modification of data objects are necessary. In this paper we showed the 3D registration about mandibular premolar of human teeth acquired by micro-CT scanner. Also, we used the ITK to find the contour of pulp layer of premolar, furthermore, the 3D imaging was visualized with VTK designed to create one kind of view on the data of 3D visualization. Finally, we evaluated that the volume model of pulp layer would be useful for the tooth morphology in dental medicine.

  • PDF