• Title/Summary/Keyword: Tool-Path Generation

Search Result 179, Processing Time 0.025 seconds

A Study on Efficient Roughing of Impeller with 5-Axis NC Machine (임펠러의 효율적인 5축 NC 황삭가공에 관한 연구)

  • Cho, Hwan-Young;Jang, Dong-Kyu;Lee, Hi-Koan;Yang, Gyun-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1917-1924
    • /
    • 2003
  • This paper proposes a roughing path generation method fer machining impeller with 5-axis machining center. Traditional researches are focus on finishing for machining impeller. To achieve efficient machining, roughing method must be studied. The proposed method consists two steps : One is to select optimal tool size and tool attitude by dividing cutting area into two regions to reduce cutting time. The regions are automatically divided by character point on the geometry of impeller blade. After dividing, the tool of the optimal size is selected for each divided region. The other is avoidance of tool interference. Tool interference in cutting areas is avoided by checking the distance between tool axis vector and ruling line on blade surface or approximated plan between ruling line. Using this method, the cutting time is reduced efficiently.

Offset of STL Model Generated from Solid Model (솔리드 STL 모델의 옵셋 방법)

  • Kim, Su-Jin;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.202-211
    • /
    • 2005
  • This paper introduces and illustrates the results of a new method fer offsetting triangular mesh by moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two vectors with the smallest difference are joined repeatedly until the difference is smaller than allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap at the smooth edges, thereby making the mesh size uniform and the computation time short. In addition, this offsetting method is accurate at the sharp edges because the vertices are moved to the normal directions of faces and joined by the blend surface. The method is also useful for rapid prototyping and tool path generation if the triangular mesh is tessellated part of the solid models with curved surfaces and sharp edges. The suggested method and previous methods are implemented on a PC using C++ and illustrated using an OpenGL library.

The Automation of Brush Deburring Using IGES (IGES를 이용한 브러쉬 디버링의 자동화)

  • 윤희중;최종순;박동삼
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.114-120
    • /
    • 2000
  • Burr is an unavoidable and undesirable by-product of most metal cutting or shearing operations. This burr must be removed to improve the fit of machined parts and safety of workers, to improve the effectiveness of finishing operations. Despite the full or partial automation of FMC or FMS, deburring operations to obtain workpiece with fine surface quality are difficult to be automated since the occurrence and condition of burr are not constant. This study focused on developing a software for deburring automation, which includes automatic recognition of parts, generation of deburring tool path and NC code, by analyzing the IGES format file which contains information of part geometry. The successful performance of developed software was demonstrated by computer simulation and deburring experiment using miniature end brush. And, this research can provide a basis for further advanced studies for automated deburring applications.

  • PDF

Robotic rim deburring technique in car wheel (로보트 이용 자동차 휠의 림 디버링)

  • 박종오;전종업;조의경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1144-1148
    • /
    • 1991
  • The problems occurred when developing a automatic wheel deburring system are to make effective flexibility in model change and the irregularity of the position/shape of the burr, to select optimal robotic manufacturing process and to develope optimal end effector. The locations where burr exists are on flange, rim and spoke. Here will be discussed the optimal solution for the removal of rim burr by using robot. The research can be summarized as the automatic robot path generation by recognizing rim contour and automatic deburring process technique. Various rim contour data is generated automatically when the sensor which is fixed to robot is moving with the parallel motion to the wheel center axis and this generated data is transferred to the data storage system and converted to the robot path data. The robotic tool system which is suitable to the rim deburring process is developed by integrating tool, compliance function and sensor. And factory automation system controlled by robot controller and PC is developed. This system shows good productivity and flexibility.

  • PDF

Prototype Manufacturing of a Brake Dust Shield by Dieless CNC Forming Technology (다이레스 포밍을 이용한 브레이크 더스트 쉴드 시작품 제작)

  • Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.36-43
    • /
    • 2007
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In order to apply the technology to industrial parts, however, many problems such as spring-back, rising of material, and trimming difficulty must be solved. In this paper a new dieless CNC forming method to improve forming quality is proposed, which consists of how to modify its original shape in CAD and how to generate its CNC tool path in CAM. The effectiveness of the proposed procedures is tested with a brake dust shield of a vehicle. The results shows that the method proposed enhances the forming quality up to 48% compared to traditional method.

  • PDF

Development of Optimal Process Planning for Exit Burr Minimization in Milling Operation (절삭가공 시 출구 버어의 최소화를 위한 최적 가공계획 알고리즘의 개발)

  • Kim, Young-Jin;Kim, Ji-Hwan;Jung, Hee-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • One of the most important processes is the face milling in processing task. It makes the smooth surface of processed goods. In processing stage, the formation of burr is inevitable. The formed burr decreases a detailed drawing and effects the safety of workers. So, it causes a deburring process for removing and a bottle-neck condition. Therefore, the study which can minimize the generation of burr is needed. In this paper, complex feature, such as line, arc, circle, spline is studied more reality than any other papers. And also, the algorithm which can predict the path of generated burr is established. Moreover, the finality goal is that the system which can produce tool-path minimized has to be developed.

Reverse Engineering and 5-axis NC machining of impeller (임펠러의 역공학과 5축가공)

  • 신재광;홍성균;장동규;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1795-1798
    • /
    • 2003
  • This paper presents a method for impeller modeling by the reverse engineering and the 5-axis machining. The impeller is composed of pressure surface, suction surface and leading edge, and so on. The impeller is modeled by using the characteristic curves of impeller such as hub curves, shroud curves and leading edge. The characteristic curves are extracted from the scanned data. The hub curves and shroud curves are generated by intersection between blade surface and hub boundary and shroud boundary. respectively. A sample impeller machining is performed by tool path plan and post-processing with inverse kinematic solution.

  • PDF

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Offset of STL Model Generated from Multiple Surfaces (열린 STL 모델의 옵셋 방법)

  • Kim Su-Jin;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.187-193
    • /
    • 2006
  • This paper introduces and illustrates the results of a new method for offsetting the triangular mesh generated from multiple surfaces. The meshes generated from each surface are separated each other and normal directions are different. The face normal vectors are flipped to upward and the lower faces covered by upper faces are deleted. The virtual normal vectors are introduced and used to of feet boundary. It was shown that new method is better than previous methods in offsetting the triangular meshes generated from multiple surfaces. The introduced offset method was applied for 3-axis tool path generation system and tested by NC machining.

Path Generation Algorithm Development for Ultrafast/Wide Area Laser Processing (초고속/대면적 레이저 가공을 위한 경로 생성 알고리즘 개발)

  • Kim, Kyung-Han;Yoon, Kwang-Ho;Lee, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.34-39
    • /
    • 2010
  • We developed a path algorithm for ultrafast/wide area laser processing. Demands for high precision laser processing with a wide area has been increasing for a number of applications such as in solar cell battery, display parts, electronic component and automobile industry. Expansion of the area in which laser processing is an important factor to handle the ultrafast/wide area processing, it will require a processing path. Processing path is path of 2- axis stage and stage of change in velocity can be smooth as possible. In this paper, we proposed a smoothingnurbs method of improved speed profile. This method creates soft path from edge part, it is main purpose that scan area ($50mm{\times}50mm$) inside processing path makes path of topology of possible straight line. We developed a simulation tool using Visual C++.