• 제목/요약/키워드: Tool diameter factor

검색결과 32건 처리시간 0.024초

계단형상 체적의 엔드밀 가공시 절삭력 변화 특성에 관한 연구 (Cutting Force Variation Characteristics in End Milling of Terrace Volume)

  • 맹희영
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.489-495
    • /
    • 2013
  • This study analyzed thevariation in the cutting force when the cutting area of a terrace volume is machined, which is generally left after the rough cutting of a sculptured surface. The numerically simulated results for the cutting forces are compared with cutting force measurements by considering the theoretical prediction of the cutting area formation and specific cutting volume. The variation in the cutting force is measured using a dynamometer installed on a machining center for 19 different kinds of test pieces, which are selected according to the variation in the terrace volume factor, tool diameter factor, and cutting depth factor. As a result, it is verified that the cutting forces evaluated by the numerical analysis coincide with the measured cutting forces, and it is proposed as a practical cutting force prediction model.

형상기억합금 기반 공구 클램핑 장치 설계 (Design of Tool Clamping Device Based on a Shape Memory Alloy)

  • 이동주;신우철;박형욱;노승국;박종권;정준모
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.70-75
    • /
    • 2008
  • This paper describes a tool-clamping/unclamping mechanism for application of a micro-spindle. The mechanism is based on one-way shape memory effect and interference-fit. The corresponding mathematical models and a few considerable design parameters are mentioned in this paper. Especially, necessary conditions for the clamping and unclamping operation are investigated through finite element analysis. The analysis results show that the differences between the diametral deformations of the tool holder in high temperature and that in low temperature are increased according to amounts of the interference. Thus the less interference between the tool-holder and the ring, the less tolerance to allow the clamping and unclamping operation because the inner diameter of the tool holder in high temperature should be smaller than the diameter of the tool shank, and that in low temperature should be larger than the diameter of the tool shank. In addition, the design for maximization of clamping force are investigated based on finite element analysis. The results show that the more amounts of the interference, the more clamping force. As the result, the interference should be considered as a important factor to maximize the tool clamping force.

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

원형전극봉에 의한 형조방전가공시 진원도 특성 (Characteristics of Roundness Using Die-sinking Electrical Discharge Machining by Circular Electrode)

  • 우정윤;왕덕현;김원일;이윤경;김종업
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.245-250
    • /
    • 1999
  • The experimental study of die-sinking electrical discharge machining for alloy tool steel of STD-11 with circular electrode was conducted for various conditions of the peak current and duty factor with the change of internal size of electrode for distributing the amount of dielectric flow through the electrode. From this study, the material removal rate(MRR) was found to be increased with the peak current and duty factor. The more MRR was obtained for the case of electrode inside diameter of 10mm. The surface roughness and roundness values were analyzed regularity under various conditions, and these values were not affected by the inside diameter change of electrode.

  • PDF

신경망을 이용한 엔드밀의 정적 강성 결정 (Determination of the Static Rigidity of the End Mill Using Neural Network)

  • 이상규;고성림
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.143-152
    • /
    • 1997
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of cross sections of the helical end mill is calculated for the determination of the relation between geometry of radial cross section and rigidity of the tools. Using the Bernoulli-Euler beam theory and the concept of equivalent diameter, a deflection model is established, which includes most influences from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill by the finite element analysis. As a result, the equivalent diameter is determined by tooth number, inscribed diameter ratio, cross sectional geometry and helix angle. Because the relation betweem equivalent diameter and each factor is nonlinear, neural network is used to decide the equivalent diameter. Input patterns and desired outputs for the neural network are obtained by FEM analysis in several case of end milling operations.

  • PDF

직교배열법에 의한 AZ31 마그네슘 합금의 마찰교반접합 특성 (Friction Stir Welding Characteristics of AZ31 Mg Alloy by Orthogonal Array)

  • 강대민;박경도;강정윤
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.16-21
    • /
    • 2012
  • Magnesium alloy has been focussed as lightweight material owing to its high strength even though low density with aluminum alloy, titanium alloy and plastic material. Friction stir welding technique was performed by rotating and plunging a shouldered tool with a small diameter pin into the joint line between two butted plates and useful to join magnesium alloy. In this paper, the experiments of friction stir welding were done to investigate the joint characteristics of AZ31 magnesium alloy. For its evaluation, the orthogonal array method$(L_{27}(3^{13}))$ was applied with four factors of pin diameter, shoulder diameter, travel speed and rotation speed of tool and also three levels of each factor. Nine tools were worked through shoulder diameter of 9, 12, 15mm and pin root diameter of 3, 4, 5mm. In addition tensile tests were excuted for the assessment of mechanical properties for joint conditions. From the results, pin diameter, shoulder diameter, and rotating speed of tool influenced on the tensile strength meaningful, but welding speed did not influence on that by the variance analysis. Beside of that, optimum condition of tensile strength was estimated as following ; shoulder diameter:15mm, welding speed:200mm/min, rotating speed:200rpm.

베인 펌프용 유량 제어부의 전산설계에 관한 연구 (A Study on the computer aided design for flow control valve of vane pump)

  • 이윤태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.555-560
    • /
    • 2000
  • The modeling and the numerical analysis are done so as to develop the Computer Aided Design program for the design of flow control valve attached to the vane pump. The factors affecting the flow rate characteristics, are analyzed by the experiments and the numerical methods. It is shown that the main factor affecting to the first control flow is the diameter of small rod of the spool, the main factor affecting to the second control flow is the diameter of big rod of the spool, the main factors affecting to the cut off are the main spring constant, the initial displacement of main spring and small diameter of the spool, and the dropping slope characteristics of flow rate are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교 (Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling)

  • 백종현;김수진
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

인터포저의 디자인 변화에 따른 삽입손실 해석 (Insertion Loss Analysis According to the Structural Variant of Interposer)

  • 박정래;정청하;김구성
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.97-101
    • /
    • 2021
  • 본 연구에서는 실험 설계법을 통해 인터포저에서 Through Silicon Via (TSV) 및 Redistributed Layer (RDL)의 구조적 변형에 따른 삽입 손실 특성 변화를 확인하였다. 이때 3-요인으로 TSV depth, TSV diameter, RDL width를 선정하여, 구조적 변형을 일으켰을 때 400 MHz~20 GHz에서의 삽입 손실을 EM (Electromagnetic) tool Ansys HFSS(High Frequency Simulation Software)를 통해 확인하였다. 반응 표면법을 고려하였다. 그 결과 주파수가 높아질수록 RDL width의 영향이 감소하고 TSV depth와 TSV diameter의 영향이 증가하는 것을 확인했다. 또한 분석 범위 내에서 RDL width를 증가시키면서 TSV depth를 감소시키고 TSV diameter를 약 10.7 ㎛ 고정하는 것이 삽입 손실을 가장 최적화 시키는 결과가 관찰되었다.

전극봉내 방전유 분산시스템에 의한 형조방전기공 (Die-Sinking Electrical Discharge Machining with Dielectric Fluid Ejection System through the Inside of the Electrode)

  • 왕덕현;우정윤
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.71-77
    • /
    • 2001
  • Experimental study if die-sinking electrical discharge machining(EDM) was conducted with rotating electrode system including inside hole for increasing the material removal rate(MRR). With the help of dielectric fluid flow through the inside according to the different internal diameter of the hole, the molten workpiece debris could be removed and flushed out during the EDM, Cold die alloy(SKD-1) was executed for different peak current and duty factor. From this study, the MRR was found to be increased with the peak current. The more MRR was obtained for the case of electrode inside diam-eter of 10 mm, but the MRR was decreased as the diameter near at the 4mm and 6mm. The values of surface roughness and roundness were analyzed under various conditions, and these were affected by the inside diameter change of electrode.

  • PDF