• Title/Summary/Keyword: Tool Tip

Search Result 216, Processing Time 0.025 seconds

Fatigue Characteristics and FEM Analysis of 18Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • 장경천;국중민;최병희;정재강;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.136-142
    • /
    • 2004
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue lift of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue lift on base metal specimens or solution annealed specimens showing that the fatigue life was almost the same. The maximum stresses of X, Y, and Z axis direction showed about 2.12${\times}$10$^2$MPa, 4.40${\times}$10$^2$MPa and 1.32${\times}$10$^2$MPa respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about 3.5∼10% than that of the experiment result showing that the longer fatigue crack length, the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

  • PDF

A Study on Microscopic Fractrue Behavior of Mortar Using Acoustic Emission (음향방출을 이용한 mortar 재료의 미시적 파괴거동에 관한 연구)

  • 이준현;이진경;장일영;윤동진
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.203-211
    • /
    • 1998
  • It is well recognized recently that acoustic emission, which is an elastic wave generated from rapid release of elastic energy in steressed solids, is very useful tool for on-line monitoring of microscopic behavior of deformation of material. In this study, three point bend test was performed to evaluate the microscopic damage progress during the loading and failure mechanism of mortar beam by monitoring the characteristic of AE signal. The relationship between AE characteristic and microscopic failure mechanism is discussed. In addition 2 dimensional AE source location based on triangular method was also done to monitor the intiation and propagation of micro crack around notch tip of mortar beam. It was shown that AE source location was very effective to predict the growth behavior of micro crack in mortar beam specimen.

The Development of Punch-Die Aligning Algorithm in Micro Punch System with using the Total Capacitance (총 정전용량을 이용한 마이크로펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발)

  • 최근형;김병희;김헌영;장인배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.114-119
    • /
    • 2003
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

System dynamics of scanning tunneling microscope unit

  • Yamada, Hikaru;Endo, Toshiro;Tsunetaka-Sumomogi;Fujita, Toshizo;Morita, Seizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.794-797
    • /
    • 1988
  • G. Binnig and H. Rohrer introduced the Scanning Tunneling Microscope (STM) in 1982 and developed it into a powerful and not to be missed physical tool. Scanning tunneling Microscopy is a real space surface imaging method with the atomic or subatomic resolution in all three dimensions. The tip is scanned over the surface by two piezo translators mounted parallel (X-piezo and Y-piezo) to the surface and perpendicular to each other. The voltage applied to the third piezo (Z-piezo) translator mounted perpendicular to the surface to maintain the tunneling current through the gap at a constant level reflects then the topography of the surface. The feed back control loop for the constant gap current is designed using the automatic control technique. In the designing process of the feed back loop, the identification of the gap dynamics is very complex and has difficulty. In this research, using some suitable test signals, the system dynamics of the gap including the Z-piezo are investigated. Especially, in this paper, a system model is proposed for the gap and Z-piezo series system. Indicial response is used to find out the model. The driving voltage of the Z-piezo and the tunneling current are considered as input and output signals respectively.

  • PDF

150 nm Pitch Measurement using Metrological AFM (길이 소급성을 갖는 AFM을 이용한 150nm 피치 측정)

  • ;I. Misumi;S. Gonda;T. Kurosawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.264-267
    • /
    • 2003
  • Pitch measurements of 150 nm pitch one-dimensional grating standards were carried out using an contact mode atomic force microscopy(C-AFM) with a high resolution three-axis laser interferometer. It was called as 'Nano-metrological AFM' In Nano-metrological AFM, Three laser interferometers were aligned well to the end of AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$-stablilzed He-Ne laser at a wavelength of 633 nm. So, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM has a traceability to the length standard directly. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement(GUM). The Primary source of uncertainty in the pitch-measurements was derived from repeatability of pitch-measurement, and its value was approx 0.186 nm. Expanded uncertainty(k=2) of less than 5.23 nm was obtained. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

  • PDF

Wind Turbine Airfoils considering Surface Roughness Effects (표면거칠기 둔감도를 고려한 풍력발전기용 익형 개발)

  • Kim, Seok-Woo;Shin, Hyung-Ki;Jang, Moon-Seok
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • Most airfoils for wind turbines commercially available have been developed for aircrafts, which are operated at high Reynolds numbers. However, Reynolds numbers of wind turbines are very low compared to those of aircrafts. In other to improve wind turbine performances, airfoils for the use of wind turbine shall be designed such as S-series airfoils developed by NREL in America. The authors have designed new airfoils for wind turbines considering designated operation conditions of wind turbines and even local wind resources in Korea. The designed airfoils are characterized by improved roughness insensitivities compared to other airfoils such as S814 and S820. The developed KWA005-240 and KWA009-127 are for root and tip sections of a wind turbine blade, respectively. Although the results show much improved performances against NACA airfoils, performance data of post-stall regulation loses some accuracies due to the characteristics of the simulation tool of XFOIL. Therefore, wind tunnel experiments are required for more accurate evaluation of the designed airfoils. Currently, the experiments has been completed and the data analysis works are going on now. The final results obtained from the experiments will be published soon.

  • PDF

Pitch Measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic Force Microscope

  • Jonghan Jin;Ichiko Misumi;Satoshi Gonda;Tomizo Kurosawa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.19-25
    • /
    • 2004
  • Pitch measurements of 150 nm one-dimensional grating standards were carried out using a contact mode atomic force microscopy with a high resolution three-axis laser interferometer. This measurement technique was named as the 'nano-metrological AFM'. In the nano-metrological AFM, three laser interferometers were aligned precisely to the end of an AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$ stabilized He-Ne laser at a wavelength of 633 nm. Therefore, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM could be used to directly measure the length standard. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). The primary source of uncertainty in the pitch-measurements was derived from the repeatability of the pitch-measurements, and its value was about 0.186 nm. The average pitch value was 146.65 nm and the combined standard uncertainty was less than 0.262 nm. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L. (STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구)

  • 김수영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

Development about Welding-process Automatic System on the department of Axle Casing Nut for Commercial Vehicle (상용차용 액셀 케이싱의 너트부 용접공정 자동화 시스템 개발)

  • Kim, Jae-Yeol;Yoo, Sin;Oh, Sung-Min;Jang, Jong-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.810-814
    • /
    • 1996
  • The purpose of this exclusive welding-machine process using the welding Torch-rotation form is to develop a mechanism which can solve the problem of twisted welding wires and cables. The technique was developed by revising the torch position and smooth controlling of both the formal and reverse rotation. Some of the advantages of using the Torch-rotation form over the Work-rotation technique are the practical uses of increased work space and link work with the automation system of the plant. Using this welding machine process, It is possible to design a specific tool in order to solve the implemental problem. And I produced a control plate which can manipulate the progress of the entire process at the work place. Even if another kind of axle casing's welding work is used this process can be utilized if the fixed tip and work is produced and changed. The development if this exclusive welding-machine could reduce the manpower of skilled welding labor and after considerable analysis, this machine was found to increase productivity and better quality product in comparison to the handmade product.

  • PDF

Weld formation mechanism during friction stir spot welding of 6061 Al

  • Sato, Yutaka S.;Fujimoto, Mitsuo;Abe, Natsumi;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.239-242
    • /
    • 2009
  • Friction stir spot welding (FSSW), developed based on principle of friction stir welding, has been paid attention as a new solid-state spot welding process. Since FSSW can produce high-quality weld in Al alloys more easily than resistance spot welding, this process has been already used for construction of Al components in the automotive industries. Despite the large industrial interests in FSSW, fundamental knowledge on welding phenomena of this process has not been fully understood. In this study, FSSW phenomena, such as the consolidation mechanism, the microstructural evolution and the material flow, were examined in Al alloy 6061. This study clarified that the elliptical zone found in the vicinity of the pin hole on the cross section was characterized by the initially lapped surface of two sheets. Moreover, the following material flow was proposed; capture of the upper material with the threads on the pin surface, spiral flow along the tool rotation, and then release at the tip of the pin.

  • PDF