• Title/Summary/Keyword: Tool Steel

Search Result 959, Processing Time 0.027 seconds

A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (II) (탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (II))

  • Ryu, Gi-Ryoung;Ro, Hyun-Cho;Song, Jae-Son;Park, Chun-dal;Youn, Il-chae
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • The sheet metal forming proceccing is very important and indispensable in the automotive industry because the accuracy of prsee worked parts is directly related to the automotive quality. But when making mold it is difficult and expensive to modify mold. mold design technology is a critical technology in press plastic working. When design the mold there are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment and perform a comparative evaluation of difference of abrasion loss mold with the alloy tool steel (STD11) and Tungsten Carbide (WC).

  • PDF

Cutting Characteristics and Deformed Layer of Type 316LN Stainless Steel (Type 316LN 스테인리스강의 절삭특성과 가공 변질층)

  • Oh, Sun-Sae;Yi, Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.196-205
    • /
    • 2004
  • The cutting characteristics and the deformed layer of nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150$\mu\textrm{m}$-300$\mu\textrm{m}$ ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem.

A Study on Development of Hot Forged Component of Hot Tool Steel DH32 (열간공구강 DH32 소재의 열간단조품 개발에 관한 연구)

  • Jang, Jin-Hyung;Kim, Hyun-Su;Kim, Jong-Hyeon;Kim, Hyun-Pil;Kim, Young-Jo
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • Hot tool steel, in general, has not been used as a material in hot forging. However such a hot tool steel is recently applied to forging materials by recent forging technology. DH32 is known as a kind of hot tool steels, which is developed for characteristics of excellent strength and toughness in high temperature. Feasibility of DH32 to hot forging material has been researched to develop the hot forging technology of a plunger used for a large-sized marine fuel pump. Hot compression experimental works were performed to investigate the hot strain characteristic of DH32 and with the experimental results FE simulations were also conducted for the design of forging processes and preform. It is found out through the hot compression experimental works that DH32 has a hot brittleness at more than $1150^{\circ}C$.

  • PDF

Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 탄소나노튜브 강화 SKD11 금형강의 분말소결 특성)

  • Moon, Je-Se;Jung, Sung-Sil;Lee, Dae-Yeol;Jeong, Young-Keun;Kang, Myung Chang;Park, Chun-Dal;Youn, Kook-Tae
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.157-162
    • /
    • 2015
  • SKD11(ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol.% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out SKD11 carbon nanocomposites.

Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

  • Lee, DongHo;Park, JinHwan;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.165-172
    • /
    • 2012
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments.

Observation of Chip Shape and Tool Damage with Interrupted Cutting of Carbon Steel for Machine Structures(SM20C) (기계구조용 탄소강(SM20C)의 단속절삭시 칩의 형상 및 공구손상관찰)

  • Bae, Myung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • In interrupted cutting, the workpiece has a groove that impacts both the cutting tool and the workpiece. Therefore, cutting tool damage occurs rapidly. In this study, I performed interrupted cutting of carbon steel for machine structures (SM20C) using an uncoated carbide tool (SNMG120404, P20), and observed tool damage, cutting chip shape, and the workpiece surface. Results: Under the specific cutting conditions of feed rate = 0.066 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.1 mm; and feed rate = 0.105 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.2 mm, the observed tool damage was small. Similar chip shape was observed (Expt. No. 1, 3, 7). Workpiece damage was observed (Expt. No. 3, 5, 7, 9).

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets (알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성)

  • Su-Ho An;Young-Keun Jeong
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

Study on the Anisotropic Size Change by Austenitizing and Tempering Heat Treatment of STD11 Tool Steel Using Dilatometry (딜라토미터를 이용한 STD11 공구강의 오스테나이징 및 템퍼링 열처리에 따른 치수 변화 이방성 연구)

  • Hong, Ki-Jung;Kang, Won-Guk;Song, Jin-Hwa;Chung, In-Sang;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.800-808
    • /
    • 2008
  • Heat treatment is an important step for tool manufacture, but unavoidably generates dimensional distortion. This study investigated the continuous dimensional change and the anisotropic behavior of STD11 tool steel during austenitizing and tempering heat treatment especially using quenching dilatometer. Dilatometric results represented that the dimensional change along longitudinal direction was larger than that along transverse direction. Anisotropic phase transformation strain was produced in forged STD11 tool steel during heat treatment. Anisotropic dimensional change increased with increasing austenitizing temperature. After tempering, anisotropic distortion was partially reduced. FactSage thermodynamic equilibrium phase simulation and microstructural observation (FE-SEM, TEM) showed that large ($7{\sim}80{\mu}m$) elongated $M_7C_3$ carbides could be formed along rolling direction. The resolution of elongated carbides during austenitizing was found to be related with the change of martensite transformation temperature after heat treatment. Anisotropic size change of STD11 tool steel was mainly attributed to large elongated carbides produced during rolling process. Using dilatometric and metallographic examination, the possible mechanism of the anisotropic size change was also discussed.

An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel (고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구)

  • Yang J. S.;Heo Y. M.;Jung T. S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.57-64
    • /
    • 2006
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRC 55) is carried out using small diameter ball endmills. Tool lift and wear characteristics under the various machining parameters are investigated Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of the tool wear and material removal rate.

Applications in Powder Compaction of Iron Powder - Influence of Tool Material on Tool Life

  • Sandberg, Odd;Krona, Andreas;Berg, Sigurd;Kaad, Flemming;Nord, Goran
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.411-412
    • /
    • 2006
  • A high nitrogen PM tool steel has shown to have an excellent galling resistance due to the introduction of a high amount of a low friction phase predominantly consisting of VN. Tool making and heat treatment are according to standard procedures. An increase of tool life of more than two times compared to ordinary tool steels is found. Furthermore, the new low friction tool steel shows a potential for sintered parts with higher densities through the applica bility of increased compaction pressure or minimized lubricant amount.

  • PDF