• Title/Summary/Keyword: Tool Path

Search Result 826, Processing Time 0.033 seconds

An Optimum 2.5D Contour Parallel Tool Path (최적 2.5D 윤곽 평행 공구경로)

  • Kim, Hyun-Chul;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.35-42
    • /
    • 2006
  • Although the conventional contour parallel tool path obtained from geometric information has been successful to make desirable shape, it seldom consider physical process concerns like cutting forces and chatters. In this paper, an optimized contour parallel path, which maintains constant MRR(material removal rates) at all time, is introduced and the result is verified. The optimized tool path is based on a conventional contour parallel tool path. Additional tool path segments are appended to the basic tool path in order to achieve constant cutting forces and to avoid chatter vibrations at the entire machining area. The algorithm has been implemented for two dimensional contiguous end milling operations with flat end mills, and cutting tests were conducted to verify the significance of the proposed method.

Determination of Flexible Tool Path in Curved Surface Finishing Based on Contact Analysis (곡면 다듬질에서 접촉해석에 근거한 유연공우 경로 설정)

  • Cho, Sung-San;Lee, Seung-Yeong;Ryu, Yong-Kyoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.69-74
    • /
    • 2000
  • Roughness of curved surfaces finished with flexible tools depends on the tool/work contact pressure and area. In this study, non-Hertzian closely conforming elastic contact theory is employed to analyze the tool/work contact and to generate a tool path producing a constant pressure at initial contact points. Finishing experiments on curved surfaced are conducted using the tool path. For comparison, curved surface finishing is also performed along the tool path producing a constant tool/work interference depth. It is demonstrated that the tool path of constant contact pressure improves the finished surface roughness.

  • PDF

An Optimized Direction Parallel Tool Path Generation for Rough Machining (황삭 가공을 위한 최적 직선 평행 공구경로 생성)

  • Kim, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.761-769
    • /
    • 2008
  • The majority of mechanical parts are manufactured by milling machines. Hence, geometrically efficient algorithms for tool path generation and physical considerations for better machining productivity with guarantee of machining safety are the most important issues in milling tasks. In this paper, an optimized path generation algorithm for direction parallel milling which is commonly used in the roughing stage is presented. First of all, a geometrically efficient tool path generation algorithm using an intersection points-graph is introduced. Although the direction parallel tool path obtained from geometric information have been successful to make desirable shape, it seldom consider physical process concerns like cutting forces and chatters. In order to cope with these problems, an optimized tool path, which maintains constant MRR in order to achieve constant cutting forces and to avoid chatter vibrations at all time, is introduced and the result is verified. Additional tool path segments are appended to the basic tool path by using a pixel based simulation technique. The algorithm has been implemented for two dimensional contiguous end milling operations, and cutting tests are conducted by measuring spindle current, which reflects machining situations, to verify the significance of the proposed method.

A Study on the Tool Interference Detection and Tool Path Correction in Compound Surface Machining (복합곡면 가공시 공구간섭의 탐지와 공구경로 수정에 관한 연구)

  • 조명우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.105-112
    • /
    • 1999
  • In this paper we deal with tool interference problem in the case of compound surface machining. A new tool interference detection and correction method based on the envelope of the tool path is suggested to identify and correct the tool interference - not only within the local path of tool movement, but also outside of the tool path. Therefore, the developed strategy can be used to check the possible interference in any region of the surface. In order to analyze quantitatively the milled surface error produced by the tool interference, improved surface prediction model is also suggested in cutting process by general cutters. The effectiveness of the proposed method is demonstrated through simulation study.

  • PDF

Rough Cut Tool Path Planning in Fewer-axis CNC Machinig (저축 CNC 환경에서의 황삭가공)

  • 강지훈;서석환;이정재
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • This paper presents rough cut tool path planning for the fewer-axis machine consisting of a three-axis CNC machine and a rotary indexing table. In the problem dealt with in this paper, the tool orientation is "intermediately" changed, distinguished from the conventional problem where the tool orientation is assumed to be fixed. The developed rough cut path planning algorithm tries to minimize the number of tool orientation (setup) changes together with tool changes and the machining time for the rough cut by the four procedures: a) decomposition of the machining area based on the possibility of tool interference (via convex hull operation), b) determination of the optimal tool size and orientation (via network graph theory and branch-and bound algorithm), c) generation of tool path for the tool and orientation (based on zig-zag pattern), and d) feedrate adjustment to maintain the cutting force at an operation level (based on average cutting force). The developed algorithms are validated via computer simulations, and can be also used in pure fiveaxis machining environment without modification.

  • PDF

An Optimum 2.5D Contour Parallel Tool Path

  • Kim, Hyun-Chul;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • Although conventional contour parallel tool paths obtained from geometric information have successfully been used to produce desired shapes, they seldom consider physical process concerns such as cutting forces and chatter. In this paper, we introduce an optimized contour parallel path that maintains a constant material removal rate at all times. The optimized tool path is based on a conventional contour parallel tool path. Additional tool path segments are appended to the basic path to achieve constant cutting forces and to avoid chatter vibrations over the entire machining area. The algorithm was implemented for two-dimensional contiguous end milling operations with flat end mills, and cutting tests were conducted to verify the performance of the proposed method.

Five-axis finishing tool path generation for a mesh blade based on linear morphing cone

  • Zhang, Rong;Hu, Pengcheng;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-275
    • /
    • 2015
  • Blisk is an essential component in aero engines. To maintain good aero-dynamic performance, one critical machining requirement for blades on blisk is that the generated five-axis tool path should be boundary-conformed. For a blade discretely modeled as a point cloud or mesh, most existing popular tool path generation methods are unable to meet this requirement. To address this issue, a novel five-axis tool path generation method for a discretized blade on blisk is presented in this paper. An idea called Linear Morphing Cone (LMC) is first proposed, which sets the boundary of the blade as the constraint. Based on this LMC, a CC curve generation and expansion method is then proposed with the specified machining accuracy upheld. Using the proposed tool path generation method, experiments on discretized blades are carried out, whose results show that the generated tool paths are both uniform and boundary-conformed.

Feedrate Optimization using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

New 5-axis Tool Path Generation Algorithm Using CL Surface Transformation (CL면 변환을 이용한 새로운 5축 가공경로 생성방법)

  • Kim Su-Jin;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.800-808
    • /
    • 2006
  • In this paper, the CL surface transformation approach that inversely deforms the 3-axis tool path generated on the deformed CL surface to a 5-axis tool path is introduced. The proposed CL surface transformation approach can be used if the orientation of the cutter is predefined. The CL surface based 3-axis tool path generation algorithms that have been improved well can be applied to the f-axis tool path generation.

5-Axis Tool Path Generation from Offset Polyhedral Mesh (옵셋 다면체를 이용한 5축 가공경로 생성)

  • Kim Su-Jin;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.678-683
    • /
    • 2006
  • In this paper, the 5-axis tool path that has been generated from the original surface is, newly generated from the offset polyhedral mesh. In this approach, the interference check between two solid models can be simplified to that of offset polyhedral mesh and axis line. The tool path computation and interference check based on the offset mesh is simpler and faster than that based on the original surface. But 5-axis tool path generation using this approach is able to apply only for ball endmill and still takes longer time than 3-axis tool path generation.