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Abstract

Blisk is an essential component in aero engines. To maintain good aero-dynamic performance, one critical machining requirement for blades
on blisk is that the generated five-axis tool path should be boundary-conformed. For a blade discretely modeled as a point cloud or mesh, most
existing popular tool path generation methods are unable to meet this requirement. To address this issue, a novel five-axis tool path generation
method for a discretized blade on blisk is presented in this paper. An idea called Linear Morphing Cone (LMC) is first proposed, which sets the
boundary of the blade as the constraint. Based on this LMC, a CC curve generation and expansion method is then proposed with the specified
machining accuracy upheld. Using the proposed tool path generation method, experiments on discretized blades are carried out, whose results
show that the generated tool paths are both uniform and boundary-conformed.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Blisk is an important component in aero engines. Because of
their complex shapes, blades on a blisk are exclusively
manufactured by five-axis machining for its unique advantage
of large range of machinability and good machining accuracy.

Nowadays, tool path planning plays an important role with
regard to computer-aided design, concurrent engineering and
their related topics [1]. There are many existing methods for
five-axis machining tool path generation, among which the
most popular ones are the iso-parametric [2,3], the iso-planar
[4–6] and the iso-cusp height [7–11] method. For these three
methods, the tool path is generated based on the criterion of
choosing a constant parameter in the machining process, i.e.,
either a constant u or a constant v in the parametric domain of
the blade surface, a set of parallel planes with a constant step-
over interval, or a constant cusp height between the

neighboring Cutter Contact (CC) curves, respectively. These
three methods can offer different CC curve patterns, among
which the iso-parametric method is the most popular in blade
machining, where the blade must be represented as a pure
parametric surface. It is exactly because of this parametric
representation, in which the boundary of the blade is naturally
an iso-parametric curve, the iso-parametric method is able to
satisfy the boundary-conforming requirement. Along with
these three most common methods, there are also other
machining methods aiming at achieving certain specific
objectives in the machining process, e.g., good machining
efficiency [12], good dynamic and kinematic behavior of the
machine tool [13] and effective cutting conditions for the cutter
[14], etc. However, all these methods require that the blade be
represented as a pure parametric surface. Since for a blade
model obtained via a 3-D scanning or CMM acquisition, it can
only be represented by a point cloud or mesh, the above
mentioned methods can be hardly used to machine the blade
directly.
Towards the tool path generation for a discretized model

(hereinafter referred as a mesh, since a point cloud can be
easily constructed into a mesh), the most intuitive way is to
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modify the existing methods so as to find their application for a
mesh model. With this strategy, the iso-planar method can be
applied to generate tool path for a mesh model [6,15,16]
because it is straightforward to calculate an iso-planar tool path
by intersecting planes with the mesh. The iso-cusp height
concept was also incorporated into the mesh model tool path
generation [17,18] to shorten the total CC curve length.
Unfortunately, similar to that in the parametric case, neither
of these two adapted methods for a mesh blade is able to meet
the boundary-conforming requirement. To address this con-
forming issue, Sun and Xu did a series of work [19–23] by re-
parameterizing the mesh model into a parametric surface with
a domain of a square or circular region, so did Oulee et al.
[24]. By choosing iso-parametric curves in the re-para-
meterized domain, the boundary-conformed tool paths can be
generated. The method can also be used to generate tool paths
for compound surfaces. However, for this method, two sets of
very large linear equations are required to be solved in the re-
parameterization process, especially when the mesh is very
dense, making this method very computational expensive and
also prone to numerical instability. Instead of planning the tool
path in the re-parameterized parametric domain, Yang et al.
[25] and Li [26] directly carried out the calculation on the
surface itself to generate boundary-conformed tool paths; but
their methods are very complicated and difficult to implement.

To address the above mentioned issues, we in this paper
propose a new method of 5-axis tool path generation for a
blade represented by a mesh. This method is based on a
concept called Linear Morphing Cone (LMC), which is
defined according to the geometric properties of the blade on
blisk. With the help of LMC, CC curves are constructed by
intersecting the mesh model with the LMC. For a blisk with a
cone-shaped hub, the proposed method can fulfill the boun-
dary-conforming requirement while the specified machining
accuracy (i.e., the cusp height) is upheld. The concept can also
be easily extended to cases when the hub is represented by not
a cone but a general revolution surface.

In the following part of the paper, the details of the
algorithm of constructing the LMC will be introduced first,
in Section 2; and then the tool path generation algorithm based
on the constructed LMC will be presented, in Section 3; after
that, experiments on two blade models will be described in
Section 4; and finally we conclude the paper in Section 5.

2. Preliminary

2.1. Geometric property of blade on blisk

A blisk is usually composed of a hub with dozens of evenly
distributed blades (sometime with splitters) mounted round it.
Fig. 1 shows an example (of part) of a blisk with the hub and
three blades. For the hub as shown in Fig. 1 (also the bottom
surface of any blade), it is a surface of revolution and usually a
lateral surface of a cone or cylinder. Also, for the top surface of
a blade as shown in Fig. 1, it is always a surface trimmed from
a lateral surface of another cone or cylinder. Thus, the two

boundaries of the blade on blisk, as shown in Fig. 2, lie on
two cones.
Note that cylinder and cone are similar to each other: both of

their lateral surfaces are generated by revolving a line (also
called generatrix line) around an axis for 2π degrees. Without
losing any generality, we use Cone-1 and Cone-2 to denote the
two revolted surface, as shown in Fig. 2.
Clearly, for a blade on blisk, Cone-1 and Cone-2 are defined

according to its boundaries. The generated CC curves which
are cone-conformed also conform to the two boundaries of the
blade. For a cone-conforming (also boundary-conforming for a
blade on blisk) tool path, the first and last CC curve should lie
on Cone-1 and Cone-2, respective, while the rest of CC curves
should be uniformly distributed between those two cones.
Motivated by this simple fact, we can utilize the two cones, i.
e., Cone-1 and Cone-2, to first generate a set of cones that
linearly morph from one to the other, and then intersect them
with the blade surface to generate the desired CC curves.

2.2. Linear morphing cone

For the blade model in Fig. 2, its coordinate system is
defined in the center of the bottom plane, as shown in Fig. 3,
where e1 and e2 are the bottom and top edge of Cone-1,
respectively. Intersect e1 and e2 with the X–O–Z plane results
in two points P1 and P2. Clearly, the line l1 passing through P1

and P2 is the generatrix of Cone-1, as shown in Fig. 3.
Similarly, the generatrix line l2 passing through two points Q1

and Q2 can be found for Cone-2.

Hub surface

Blade top surface

Blade

Fig. 1. Elements of a blisk.

Cone-2

Cone-1 Cone-m

Fig. 2. Cones defined on a blade.
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The generation of the morphing cones consists of two steps.
First, the generatrix of the morphing cone, lm, is calculated by
linearly interpolating between l1 and l2. Next, we revolve lm
around the Z axis to generate a cone, i.e., the LMC. The
detailed derivation steps are described below.

The generatrix line l1 can be expressed by P1 and P2 in a
parametric form:

l1 ¼ 1� tð ÞP1þ tP2 ð1Þ
where tA ½0; 1� is the parameter of this line.

Similarly, the generatrix line l2 can be expressed as:

l2 ¼ 1� tð ÞQ1þ tQ2 ð2Þ
where parameter t is the same as that in Eq. (1).

The generatrix line of the morphing cone lm is a linear
interpolation of l1 and l2:

lm ¼ 1�sð Þl1þsl2 ð3Þ
where sA ½0; 1� represents the morphing ratio from Cone-1 to
Cone-2.

With the generatrix lm, the next step is to revolve it around
the Z axis to generate the morphing cone Cone-m:

cm ¼
xm cos θ

xm sin θ

zm

2
64

3
75 ð4Þ

where: xm, ym and zm are the coordinates of lm; θA ½�π; þπ�,
denoting the revolving angle of lm around the Z axis.

Eqs. (2) and (3) indicate that Cone-m is a linear function of t
and s. Eq. (4) indicates that cm is also a sine function of the
third parameter θ, so that it can be expressed as cm t; s; θð Þ. An
example of Cone-m with s ¼0.5 is shown in Fig. 2.

With the above derivation, the morphing cone can be
constructed as a function of three parameters: t, s and θ,
where s is the morphing ratio between Cone-1 and Cone-2,
which determines the shape of the LMC. For a certain s, the
other two parameter t and θ define the location of the point on
the cone.

With the LMC, the cone-conforming CC curve can be
generated by intersecting the LMC with the meshed blade
model. Details for this method will be given next.

3. Tool path generation based on LMC

Tool path generation for a meshed blade model based on
LMC mainly involves two steps: (1) the CC curve generation,
which calculates the CC points so as to obtain a CC curve; and

(2) the CC curve expansion, which finds the side step for
deciding the next CC curve. Methods for these two steps are
explained in details in the next two sub-sections.

3.1. CC curve generation

As already alluded, a CC curve is generated by intersecting
the LMC with the meshed blade model. Therefore the CC
curve generation is essentially a mesh–cone intersection
problem. For a mesh model, its underline component is an
edge with two end points. Before solving the mesh–cone
intersection problem, the issue of edge–cone intersection
should be addressed first.

3.1.1. Edge–cone intersection
Give an edge with two end points T1 and T2 as shown in

Fig. 4, it can be expressed as:

l rð Þ ¼ T2�T1ð ÞrþT1 ¼ crþd ð5Þ
where: c¼ ðT2�T1Þ, rA ½0; 1� is the parameter of the edge.
For a particular LMC, s is given, e.g., s¼ si, and the LMC

can be expressed as cm t; si; θð Þ. With l defined in Eq. (5),
solving the edge–cone intersection problem, i.e., lðrÞ inter-
sects with cm t; si; θð Þ, resorts to finding the solution of
parameters r, θ and t, which can be achieved by solving a
3 by 3 equations:

cm :

a1tþb1ð Þ cos θ

a1tþb1ð Þ sin θ

a3tþb3

2
64

3
75¼ l :

c1rþd1
c2rþd2
c3rþd3

2
64

3
75 ð6Þ

where: ai, bi, ci, di are the ith component of vectors a, b, c, d
that are the parameters constructing the LMC and the edge.
We get:

a1tþb1ð Þ cos θ½ �2þ a1tþb1ð Þ sin θ½ �2 ¼ c1rþd1ð Þ2þ c2rþd2ð Þ2
ð7Þ

Solve the Z component:

t¼ c3
a3

rþ d3�b3
a3

¼mUrþn ð8Þ

where: m¼ c3=a3, n¼ d3�b3=a3.
Substitute Eq. (8) to Eq. (7), we get:

c21þc22�a21m
2

� �
r2þ2 c1d1þc2d2�a21mn�a1mb1

� �
r

þ d21þd22� a1nþb21
� �� �¼ 0 ð9Þ

O X

YZ

P2

P1

Q2

Q1

l2l1 lm

s

t

s

t

e1

e2

Cone-1

Fig. 3. Definition of the morphing cone.

Fig. 4. Definition of mesh structure.
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To solve r, the discriminant Δ should be solved. If Δo0,
there is no intersection between the cone and the line; Else,
select the solution of r with rA ½0; 1�.

With r solved, the intersection point can be obtained by
substituting r into Eq. (5).

3.1.2. Mesh–cone intersection
With the available node–edge–face topology (such as the

half-edge data-structure) of the meshed blade obtained in the
mesh constructing and storing process, the mesh–cone inter-
section problem can be easily solved based on the already
solved edge–cone intersection problem.

Assume for a triangulated mesh, three lists are constructed
to store the nodes, edges and faces of the mesh, denoted as
N ¼ fn1; n2;…; ni…g, E¼ fe1; e2;…; ei…g and F ¼ ff 1; f 2;…;
f i…g, respectively. The mesh–cone intersection problem can
be easily solved with the following three steps.

Step1 Scan the edge list E, until an edge em is found
intersecting with the cone cm; this edge is marked as the
initial edge intersected by the cone.
Step 2 Based on the edge–face topology, find the left
face of em, e.g., f l; and then traverse its three edges, find
the other edge eo (rather than em,) which also intersects
cone cm;
Step 3 Substitute em with eo, and repeat Step 2, until the
very initial edge found in Step 1 is reached again.

With the node–edge–face topology, the mesh–cone inter-
section problem can be solved efficiently with the above three
steps, with the time-complexity no worse than Oðlog nð ÞÞ,
where n is the number of edges of the mesh.

3.1.3. Forward step calculation
The intersection between the meshed blade and a particular

LMC forms a 3-D closed point loop on the mesh. However,
the distribution of those points largely depends on the quality
of the mesh model, which may be too dense or too sparse. To
guarantee an appropriate machining accuracy, the forward step
calculation should be carried out by firstly interpolating the
intersection points as a cubic spline and then sampling the CC
points according to the specified chord error.

Assume that the interpolated CC curve is sðtÞ, tA ½0; 1�, and
the specified chord error for the CC point sampling is e, as
shown in Fig. 5. For the i-th CC curve pi with its parameter on
sðtÞ being t ¼ ti, the next CC point piþ1 is obtained by
calculating the parametric increment Δti of the CC curve at

pi, which can be approximated as:

Δti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8eri�4e2

I

r
ð10Þ

where: ri is the radius of curvature of sðtÞ at t¼ ti, I is the
length of the tangent vector of sðtÞ at t¼ ti, which is
I ¼ jjds tð Þ=dtjt ¼ ti jj2;
With Δti at pi calculated per Eq. (10), the next CC point

piþ1 is s tð Þjt ¼ tiþΔti .
In the CC point sampling process, the initial CC point is

selected as the point s tð Þjt ¼ 0, and the following CC points are
recursively calculated per Eq. (10), until the entire CC curve
sðtÞ is sampled, i.e., when t¼ 1 is reached.

3.2. CC curve expansion

For each CC curve, CC points are generated by intersecting
the LMC with the meshed blade model. Given one CC curve,
CC curve expansion is to generate the next CC curve, so that
the cusp height between the two neighboring CC curves is
bounded by some specified value h. In our particular setting,
the CC curve expansion problem is equivalent to: from a given
LMC of s¼ si, find the next LMC with s¼ siþ1.
Assume that the i-th CC curve is composed of n CC points,

e.g., CCi¼{CCi,0, CCi,1,… CCi,n}, and for the j-th CC point
CCi,j on this CC curve, CCiþ1,j is the corresponding offsetting
point on the next CC curve CCiþ1, as shown in Fig. 6.
From the tool path generation scheme proposed in Section

3.1, it is clear that both CCi,j and CCi,jþ1 are on a certain
LMC. Assume that curve CCi is generated from an LMC of
cm t; si; θð Þ with s¼ si, and for CCi,j, there are corresponding
values of t and θ, e.g., ti;j and θi;j. In this case, CCiþ1,j can be
expressed by the first order Taylor's expansion at CCi,j:

CCiþ1;j ¼ CCi;jþ
∂cm
∂t

j s ¼ si; t ¼ ti;j;θ ¼ θi;jð Þ UΔti;j

þ ∂cm
∂s

j s ¼ si; t ¼ ti;j;θ ¼ θi;jð Þ UΔsi;j

þ ∂cm
∂θ

jðs ¼ si ; t ¼ ti;j ;θ ¼ θi;jÞ UΔθi;j ð11Þ

From another perspective, both CCi, and CCiþ1,j belong to the
blade surface. To carry out the expansion, a local frame k–f–n
should be defined on CCi,j, as shown in Fig. 6; where f,and n,

e

pi
li

ri

pi+1

s(t)

Fig. 5. Forward step on one CC curve.

f

n

k

CCi, j

CCi+1, j
C (t, si , θ)

Mesh blade

C (t, si+1 , θ)

CCi+1

CCi

Fig. 6. CC curve expansion.
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are the feed direction and surface normal at point CCi,j,
respectively, and k, is the cross product of f, and n,:
k,¼ f,� n,. The expansion distant from CCi, to CCiþ1,j are
bounded by the machining accuracy requirement.

CCiþ1;j�CCi;j ¼,k Udi;j ð12Þ
where di;j is the cutting strip width at point CCi, and it is
decided by the local geometry around point CCi and the
specified maximal cusp height h.

The cutting strip width d can be calculated for a given cusp
height h as:

d¼
2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� 2rR�2hR�h2

2 hþRð Þ

h i2r
=ð1�r=RÞ ðconvex caseÞ

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� �2rRþ2hR�h2

2 h�Rð Þ

h i2r
=ð1þr=RÞ ðconcave caseÞ

8>>><
>>>:

ð13Þ
where: r is the radius of the ball-end cutter, and R is the radius
of curvature at the CC point along direction k. Since it is a
mesh model, the radius of curvature R for CCi, is estimated
with the method proposed in [27].

By combining Eqs. (11)–(13), Δsi;j is obtained by solving a
3 by 3 linear equation system. For each CC point CCi,j in CCi=
{CCi,0, CCi,1,… CCi,n}, Δs can be calculated similarly, i.e.,
fΔsi0;Δsi;1;…Δsi;ng. To ensure that the cusp height between
CCi and CCiþ1 not exceed the maximal cusp height h, the
minimum Δs among all the CC points on CCi is selected:

Δsi ¼ min Δsi;j
� �

; ðj ¼ 1; 2;…nÞ ð14Þ
With Δs calculated for LMC with s ¼ si, the next LMC is then
readily available:

siþ1 ¼ siþΔsi ð15Þ
In our implementation, the first CC curve is generated by
intersecting the mesh blade with the LMC of s ¼ 0 with the
method proposed in Section 3.1. From this initial CC curve,
expansion is carried out with the equations as described from
Eq. (11) to Eq. (15). The two processes – CC curve generation
and CC curve expansion – are carried out iteratively, until the
whole blade surface is covered Fig. 7.

4. Experimental results and discussion

4.1. Experimental results

To validate the effectiveness of our introduced tool path
generation method, experiments are carried out on two meshed
blades, as shown in Fig. 8(a) and (b), respectively. In the two

experiments, a ball-end cutter with radius smaller than the
radius of the blade fillet is chosen, which is 6 mm; the
specified cusp height and chord error are both set to be
0.05 mm.
For blade 1, Fig. 9 is the result of the generated tool path

based on LMC. In Fig. 9 (a), Cone-1 and Cone-2 are defined
from the boundaries of the blade, while Cone-m is the LMC
with coefficient s¼0.5.
For blade 2, the definition of the machining region is

different from that of blade 1: Cone-1 is assigned according
to the bottom boundary of blade 2 while Cone-2 is defined by
the user, as shown in Fig. 10(a). Cone-m is defined the same
way as that for blade-1. The tool path generated for the
proposed region is shown in both Fig. 10(a) and (b).

4.2. Discussion

For a meshed blade on blisk, its top and bottom boundary
normally lie on two cones; therefore the cone-conformed CC
curves also conform to the boundaries of the meshed blade.
From the experimental results shown in Figs. 9 and 10, it is
clear that the uniform and cone-conformed tool paths gener-
ated by the proposed LMC-based method are also boundary-
conformed.
There is another advantage with our tool path generation

method. Referring to the tool path generation process of blade
2 (Fig. 10): Cone-1 is defined according to the bottom of blade
2 while Cone-2 is defined by the user. For the region between
Cone-1 and Cone-2, the generated tool path is also uniform
and cone-conformed. In this case, neither Cone-1 nor Cone-2
is required to be fixed on the original model – it can be defined
and assigned arbitrarily by the user, meaning that the user has
the freedom to select the machining region by selecting proper
cones. This property makes our method useful for adaptive
machining, in which the blade surface is divided into several
regions, and the machining strategy for each region could be
different.
Also, with the freedom of selection of proper cones, our tool

path generation method can be applied to the machining of
other kinds of surfaces, be them parametric or meshed. The
only issue here is that the cone-conformed CC curves
generated in this way may no longer be boundary-conformed.
With no boundary-conformed requirement, the proposed

cone-conformed LMC-based method naturally degenerates
into the (generalized) iso-planar tool path generation method.
Specifically, if the two bounding cones are coaxial and very
large when compared to the workpiece, they could be regarded
as two parallel planes from the perspective of the workpiece,
and the tool path generated using our algorithm can be
regarded as an iso-planar one.
For a tool path generated based on the LMC with ball-end

cutter, the generated CC curves are bounded between two
cones, e.g., Cone-1 and Cone-2 as shown in Figs. 9 and 10. In
some cases, the containment problem may exist: for the
generated tool path, the material removed by the cutter may
be outside these two cones, where gouging could happen near
the root of the blade. Fig. 11(a) shows an example where CC

d

r

R

hCCi,j

CCi+1,j

Fig. 7. Cutting strip width.
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Fig. 8. (a) Meshed blade 1; (b) meshed blade 2.

Fig. 9. (a) Cone defining the boundary of meshed blade 1; (b) generated tool path.

Fig. 10. (a) Cones defining the machining region for meshed blade 2; (b) the generated tool path for the given region.
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point pi lies on the blade while part of the cutter gouges into
the rotor at the same time. Nevertheless, in real machining, this
kind of case is very rare. The more general case is that for a
blisk, a fillet with radius of rb is designed to smoothly transit
from the blade to the rotor, as shown in Fig. 11(b). In the
process of finishing CC curve generation, to guarantee that the
entire blade (the blade body and the fillet) can be machined,
the radius of the cutter should be smaller than that of the fillet,
i.e., rtrrb. In this case, the material removed by the cutter per
the generated CC curves is strictly bounded between the two
cones, i.e., gouging into the rotor can never happen.

To ensure that the whole fillet surface is covered by CC
curves, the first cone, i.e. Cone-1, as shown in Figs. 9 and 10,
is selected such that it will coincide with the hub surface.
Therefore, the intersection curve between the fillet and Cone-1,
i.e. the first CC curve, is naturally the boundary curve between
the fillet and the hub surface. The LMC then propagates from
Cone-1 towards Cone-2 and CC curves can be generated to
cover the entire machining region, including the blade surface
and the fillet. In this way, the whole fillet and blade surface can
be cut thoroughly.

For the proposed CC curve generation method based on
LMC, the boundary-conformed property is based on the
assumption that the top and bottom boundaries of the blade
lie on two corresponding cones, as shown in Fig. 9. As what
has been stated in Section 2.1, for the blades on a blisk, this
assumption normally holds. However, for other kinds of
blades, e.g., blades amounted on a fan or a turbine, things
are different because the hub may not be cone-shaped. To
extend our method to arbitrary kinds of blades, rather than
using the LMC, another type of revolved surfaces called Linear
Morphing Revolution Surface (LMRS) can be defined simi-
larly by linearly morphing from the bottom revolved surface

SR-1 to the top revolved surface SR-2, as illustrated in Fig. 12.
In defining this LMRS, the entire mathematics is the same
except that both l1 and l2 are now curves instead of lines.
Based on LMRS, CC curves can be generated in the same
fashion – LMRS–mesh intersection, and they strictly conform
to the boundary of the blade.

5. Conclusion

Based on a concept called Linear Morphing Cone (LMC),
this paper proposes a five-axis tool path generation method for
a mesh model blade on a blisk, which has the unique property
of boundary-conforming and at the same time meeting the
specified cusp height requirement. This tool path generation
method is very useful for meshed blade machining on blisk.
By choosing appropriate two cones to define the LMC, the
method can be easily applied to five-axis tool path generation
for other kinds of part surfaces, e.g., a die or mold, be they
parametric or meshed.
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