• 제목/요약/키워드: Tool Geometry

검색결과 540건 처리시간 0.022초

Can-Flange 성형에서 금형형상에 따른 소재 유동특성 (The Material Flow according to Die Geometry in Can-Flange Forming)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.42-47
    • /
    • 2012
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. We have discussed the influences of tool geometry such as punch nose angle, relative gap height, die corner radius on material flow and surface expansion into can and flange region. To analyse the process, numerical simulations by the FEM and experiment by physical modeling using Al alloy as a model material have been performed. Based on the results, the influence of fixed parameters on the distribution of divided material flow and surface expansion are obtained.

  • PDF

공구날당 소재제거량이 원통형 밀링가공물의 원주형상에 미치는 영향 (Efffct of Material Removal per Tooth on the Circumferential Shape of Cylindrically Milled Parts)

  • 김광희
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.62-66
    • /
    • 2004
  • A study for investigating the effects of the cutting conditions(feed rate, radial depth of cut, cutting speed) and the tool diameter on the circumferential geometry of the cyl indrically end-mi1led workpiece is described. In this work, the circumferential geometry is characterized by the roundness error. Experimental results show that the circumferential geometry is directly affected by the material removal per tooth,which is defined as a function of the cutting speed, the feed rate and the radial depth of cut. And, the radial depth of cut is revealed to be the most critical condition among them. It is also found that the roundness error decreases when the tool diameter is larger under the same cutting conditions.

시뮤레이터를 이용한 드릴연삭용 CAM 개발

  • ;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.213-214
    • /
    • 2006
  • The CAM software for drill grinding has been developed to save time, reduce cost for tool manufacturing and obtain accuracy of tool. In this paper, the developing software for drill will be presented including calculation and simulation of machining processes using 5-axes CNC grinding machine. The algorithm fer helical flute grinding was applied into calculating NC data. The software will generate NC code for machining by using input data of tool geometry, wheel geometry, wheel setting, machine setting. These NC code files will be used in simulator as input file. The simulator provides some functions for simulating machining processes, inspecting and measuring tool geometry.

  • PDF

Distributivity on the Gyrovector Spaces

  • Kim, Sejong
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.13-20
    • /
    • 2015
  • As a vector space provides a fundamental tool for the study of Euclidean geometry, a gyrovector space provides an algebraic tool for the study of hyperbolic geometry. In general, the gyrovector spaces do not satisfy the distributivity with scalar multiplication. In this article, we see under what condition the distributivity with scalar multiplication is satisfied.

공구 접근 경로가 원통형상의 밀링가공물에 미치는 영향 (Effect of Tool Approaching Path on He Shape of Cylindrically Milled Parts)

  • 김강
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.45-51
    • /
    • 2003
  • Milling process has beer used in aircraft, auto-component and mold industries widely. They need more accurate and precise parts to improve the performance and quality of their products. So, the geometrical form accuracy of the workpiece surface generated by this process is getting more and more important. Generally, the form accuracy is affected by machine conditions, cutting conditions, tool geometry, tool deflection by cutting force and tool path md so on. Even though they are controlled as perfect conditions, it is easily found that there is a line along the axis of a cylindrically milled part. It is presumed that the tool approaching causes this error on milled surface. Thus, the study for investigating the effect of the tool approaching path on the cylindrical surface geometry of the end-milled part is carried out.

엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구 (Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation)

  • 이상규;고성림
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

공구전극곡면에 의한 3차원 방전가공조건의 결정 (Determination of Parameters for 3-Dimensional Electrical Discharge Machining by a Tool Electrode Surface)

  • 주상윤;이건범
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.27-33
    • /
    • 2000
  • This paper presents a method for determining machining parameters in 3-dimentional electrical discharge machining(EDM). The parameters are the peak value of currents, the pulse-on time, and the pulse-off time. It is known that they influence the performance of EDM more than the other else. The parameters are determined from the discharge area between a tool electrode and a work piece. The discharge area is directly influenced by the geometry of a tool surface and the tool discharge position. The discharge area on a tool discharge position is calculated from intersection curves between the tool surface and a horizontal plane. The grid search method is applied to determine the intersection curves. An example is introduced to show that the machining parameters are obtained from the surface geometry of a tool electrode.

  • PDF

SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구 (A Study on the Flank Wear of Carbide Tool in Machining SUS304)

  • 정진용;오석형;김종택;서남섭
    • 한국정밀공학회지
    • /
    • 제8권3호
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

선삭가공으로 제작되는 나사형상의 3차원 파라메터릭 모델 (Parametric Modeling of a Screw Fabricated by Turning)

  • 김호찬;고태조
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.62-68
    • /
    • 2012
  • Geometry of a screw fabricated by a turning process determined by the shape of the tool, feed rate of the tool and rotation speed of the spindle. Therefore, computing the exact geometry of the screw is very important to perform a simulation on machining or an evaluation of the workpice quality. In this paper, a new mathematical geometry model of the 3 dimensional screw is fabricated by turning process introduced for the exact geometry computation. Becasue model has a parametric formulation, it is easy to process for a CAD geometry or apply for a machining simulation. Also, it can be applied to process planning because it gives precise machined geometry on whole the 3 dimensional surface of the screw. This paper introduces a new parametric model of a geometry for screw fabricated by turning process. As an application, a simulation software for the 3 dimensional screw surface is developed and evaluated for several manufacturing parameters.

Global van Hiele (GVH) Questionnaire as a Tool for Mapping Knowledge and Understanding of Plane and Solid Geometry

  • Patkin, Dorit
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제18권2호
    • /
    • pp.103-128
    • /
    • 2014
  • This paper presents the Global van Hiele (GVH) questionnaire as a tool for mapping knowledge and understanding of plane and solid geometry. The questionnaire facilitates identification of the respondents' mastery of the first three levels of thinking according to van Hiele theory with regard to key geometrical topics. Teacher-educators can apply this questionnaire for checking preliminary knowledge of mathematics teaching candidates or pre-service teachers. Moreover, it can be used when planning a course or granting exemption from studying in basic geometry courses. The questionnaire can also serve high school mathematics teachers who are interested in exposing their students to multiple-choice questions in geometry.