• Title/Summary/Keyword: Tool Compensation

검색결과 300건 처리시간 0.023초

가공공정 최적화 및 무인화를 위한 요소기술 분석 연구 (Key Technology Analysis for Machining Process Optimization and Automation)

  • 김동훈;송준엽
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.179-184
    • /
    • 2013
  • In this article, we introduce the study case of technology that can automatically compensate the errors of these factors of a machine during processing on the machine tool's CNC(Computerized Numerical Controller) in real time. The biggest factors that lower the machining accuracy are thermal deformation and chatter vibration. This study is related to the detection and compensation of thermal deformation and chatter vibration that can compensate for faster and produce processed goods with more precision by autonomous compensation. In addition, this study is related to the active control of vibration during machining, monitoring of cutting force and auto recognition of machining axes origin. Thus, we attempt to introduce the related contents of the development we have made in this article.

커터 런 아웃과 가공표면 생성에 관한 연구 (A Study on the Charactistics of Machined Surface due to Cutter Runout)

  • 황준;이기용;신승춘;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.873-877
    • /
    • 1997
  • This paper presents experimental results to know the charcteristics of machined surface due to cutter runout. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear, amplification of force variation and hence enargement vibration amplitude. To develop in-proess cutter runout compensation system, set-up the micro-positoning mechanism which is based on piezoelectric translator embeded in the work holder to manipulate the depth of cut in real-time. And feasibility test of system was done under the various experimental cutting conditions. This results provide lots of information to build-up the precision machining technology.

  • PDF

초소형/광대역 VCO 개발 (The Development of Ultra-Miniature / Wideband VCO)

  • 변상기;강용철;황치전;안태준
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.183-186
    • /
    • 1999
  • The Ultra-miniature and low phase noise Colpitts VCO of 0.06㏄ in size has been developed using the high Q resonator and phase compensation technique. This type is one transistor VCO without a buffer. To design and simulate the VCO accurately, nolinear model parameters of a bipolar transistor are extracted using the measured I-V data and S parameters based on the Gummel-Poon model. Design and simulation have been done by Serenade 7.5 design tool using the extracted nonlinear model parameters. The wideband VCO has been designed using two varactor diodes and open loop gain compensation technique to improve the operating frequency range. The ultra-miniature VCO has shown the phase noise of -91㏈c/Hz at 10KHz offset and output power of -3㏈m The wideband VCO has shown the tuning frequency bandwidth of 150MHz phase noise of -95㏈c/Hz at 10KHz offset and output power of 5㏈m.

  • PDF

교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스 (Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability)

  • 정영국
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

공작기계의 오차요소 측정을 통한 3차원 위치정밀도 향상 (The enhancement of 3-dimensional positioning accuracy by measuring error factors for CNC machine tools)

  • 손진욱;서석환;정세용;이응석;위현곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.260-265
    • /
    • 1994
  • Efforts have been devoted to developing rapid and accurate methods for measuring the errors of machine tools. The method os measurement and calibration of machine tool errors should be general and efficient. The objective of this study is to show in detail the full sequence from the measurement of errors factors to the verification of the positioning accuracy after compensation for the volumetric error. In this paper, we described the steps in measuring the volumetric error parameters, a general error model composed of error parameters, temperature, and the desired position. The validity of the error calibration methods proposed in this paper was tested using a vertical 3-axis CNC machine with a laser interferometer and a ball bar.

  • PDF

VCM을 이용한 리소그래피용 레티클 스테이지의 설계 및 기구학적 해석 (Design and Kinematic Analysis of the Reticle Stage for Lithography Using VCM)

  • 오민택;김문수;김정한
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.86-93
    • /
    • 2008
  • This paper presents a design of the reticle stage for lithography using VCM(Voice Coil Motor) and kinematic analysis. The stage has three axes for X,Y,${\theta}_z$, those actuated by three VCM's individually. The reticle stage has cross coupled relations between X,Y,${\theta}_z$ axes, and the closed solution of the forward/inverse kinematics were solved to get an accurate reference position. The reticle stage for lithography was designed for reaching both high accuracy and long stroke, which was $0.1{\mu}m$ (X,Y)/ $1{\mu}rad({\theta}_z)$ accuracies and relatively long strokes about 2mm (X,Y) and 2 degrees(${\theta}_z$). Also this research presents a rotational compensation algorithm for the precision gap sensor for the stage. Simulation results show the overall performance of the whole algorithm and the improvement quantity of the rotational compensation algorithm.

보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구 (A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program)

  • 우선희;이동주
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.

무인 선삭 셀에서의 측정/검사 시스템 (Inter-Process Inspection System Suitable for Unattended Turning Cells)

  • 김선호;김선호
    • 산업공학
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 1992
  • In a transfer line with mass production capability, calibration systems are included in the process as a separate dedicated station. However, this method is not appropriate in an unattended FMC with flexibility. As the FMC produces vesatile parts with small batch sizes, more flexible calibration systems are required. In this paper, a calibration/inspection system suitable for an unattended turning cell is introduced. The system has functions of dimensional calibration of parts by touch probes, tool wear compensation, and quality monitoring of parts. Furthermore, characteristics of errors in the system are identified and corresponding compensation methodology is suggested. An operation software is developed for efficient use of the system.

  • PDF

PC-based NC 공작기계의 소프트웨어 보간기 개발 (Development of Software Interpolators for PC-based NC Machine Tools)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.99-105
    • /
    • 1996
  • Increasing demands on precision machining of free-form surfaces have necessitated the tool to move not only with position error as small as possible, but also with smoothly varying feedrates. In this paper, linear, circular and spline interpolators were developed in reference-pulse type using PC. M-SAM and M-DAM were designed by the comparison and analysis of previous interpolation methods. Spline interpolator was designed to follow the free-form curves. To apply to the real cutting process, constant feedrate compensation and acceleration-deceleration compensation were conceived. Finally, its performance was tested using retrofitted milling machine. As a result, new interpolation algorithm is favorable in precision machining of free-form curves.

  • PDF

마이크로 금형 부품을 위한 마이크로 절삭가공 기술 (Micro cutting process technology for micro molds parts)

  • 하석재;박정연;김건희;윤길상
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.5-12
    • /
    • 2019
  • In this paper, we studied the micro tool deflection, micro cutting with low temperature, and deformation of micro ribs caused by cutting forces. First, we performed an integrated machining error compensation method based on captured images of tool deflection shapes in micro cutting process. In micro cutting process, micro tool deflection generates very serious problems in contrast to macro tool deflection. To get the real images of micro tool deflection, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool path. Second, in macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this passibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed. Third, the micro pattern was deformed by the cutting forces and the shape error occurred in the sidewall multi-step cutting process were minimized. As the results, the relationship between the cutting conditions and the deformation of micro-structure during micro cutting process was investigated.