• Title/Summary/Keyword: Tomography, emission-computed, single-photon

Search Result 155, Processing Time 0.045 seconds

The Efficacy of Detecting a Sentinel Lymph Node through Positron Emission Tomography/Computed Tomography (근골격계 악성 종양 환자의 림프절 전이 발견을 위한 양전자 방출 컴퓨터 단층 촬영기(Positron Emission Tomography/Computed Tomography)의 유용성)

  • Shin, Duk-Seop;Na, Ho Dong;Park, Jae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.509-518
    • /
    • 2019
  • Purpose: Lymph node metastasis is a very important prognostic factor for all skin cancers and some sarcomas. A sentinel lymph node (SLN) biopsy is the most useful technique for identifying SLNs. Recently, a new generation of diagnostic tools, such as single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/CT (PET/CT) enabled the detection of SLNs. This study compared the efficacy of PET/CT for detecting lymph node metastases with a SLN biopsy in a single medical center. Materials and Methods: From 2008 to 2018, 72 skin cancers of sarcoma patients diagnosed with some lymph node involvement in a whole body PET/CT reading were assessed. Patients suspected of lymph node metastasis were sent to biopsy and those suspected to be reactive lesions were observed. The analysis was performed retrospectively using the medical records, clinical information, PET/CT readings, and pathology results. Results: The age of patients ranged from 14 to 88 years and the mean follow-up period was 2.4 years. Twenty-two patients were suspected of a lymph node metastasis and confirmed. The sensitivity, specificity, positive predictive value and negative predictive value of PET/CT images in sarcoma and non-sarcoma tumors were increased significantly when the expert's findings were considered together. Conclusion: PET/CT is effective in detecting lymph node metastases.

Ictal single-photon emission computed tomography with slow dye injection for determining primary epileptic foci in infantile spasms (영아연축에서 추적자의 느린 점적주사를 이용한 발작기 SPECT)

  • Hur, Yun Jung;Lee, Joon Soo;Kang, Hoon Chul;Park, Hye Jung;Yun, Mi Jin;Kim, Heung Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.804-810
    • /
    • 2009
  • Purpose : We investigated whether ictal single-photon emission computed tomography (SPECT) with prolonged injection of technetium-99m (99mTc) ethyl cysteinate dimer during repeated spasms can localize the epileptogenic foci in children with infantile spasms. Methods : Fourteen children with infantile spasms (11 boys, 3 girls; mean age, $2.2{\pm}1.3$ years) were examined. When a cluster of spasms was detected during video electroencephalography (EEG) monitoring, $^{99m}Tc$ ethyl cysteinate dimer was slowly and continuously injected for 2 minutes to determine the presence of ictal SPECT. For 7 children, the ictal and interictal SPECT images were visually analyzed, while for the remaining 7 children, the SPECT images were analyzed using the subtraction ictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM) technique. Subsequently, we analyzed the association between the ictal SPECT findings and those of other diagnostic modalities such as EEG, MRI, and positron emission tomography (PET). Results : Increase in cerebral blood flow on ictal SPECT involved the epileptogenic foci in 10 cases6 cases analyzed by visual assessment and 4 analyzed by the SISCOM technique. The ictal SPECT and video-EEG findings showed moderate agreement (Kappa=0.57; 95% confidence interval, 0.18-0.96). Conclusion : Ictal SPECT with prolonged injection of a tracer could provide supplementary information to localize the epileptogenic foci in infantile spasms.

Ischemic Burden Assessment Using Single Photon Emission Computed Tomography in Single Vessel Chronic Total Occlusion of Coronary Artery

  • Yong-Hoon Yoon;Sangwon Han;Osung Kwon;Kyusup Lee;Ju Hyeon Kim;Junghoon Lee;Tae oh Kim;Jae-Hyung Roh;Pil Hyung Lee;Soo-Jin Kang;Jae-Hwan Lee;Young-Hak Kim;Cheol Whan Lee;Dae Hyuk Moon;Seung-Whan Lee
    • Korean Circulation Journal
    • /
    • v.52 no.2
    • /
    • pp.150-161
    • /
    • 2022
  • Background and Objectives: Studies evaluating the nature of ischemic burden of chronic total occlusion (CTO) vessels are still lacking. Methods: A total of 165 patients with single vessel CTO >2.5 mm in an epicardial coronary artery who underwent single photon emission computed tomography (SPECT) were enrolled in the study. Ischemic burden was calculated with the use of semi-quantitative SPECT analysis, and was defined as the summed difference score (SDS) divided by the maximal limit of the score (=SDS/68). Results: The mean age of the participants was 59.5 years and the CTO of the left anterior descending coronary artery (LAD), left circumplex coronary artery (LCX), and right coronary artery (RCA) accounted for 93 (56.4%), 18 (10.9%), and 54 (32.7%) patients, respectively. The median ischemic burden of the total population was 8.8%, and it was highest in the LAD CTO (10.3%) compared with the LCX (5.9%) and RCA CTO (5.9%, p<0.001). High-ischemic burden (ischemic burden >10%) was observed in 66 patients (40.0%), and in 47 patients (50.5%) of the LAD CTO. Ischemic burden was different according to the CTO location only in LAD CTO. The statistically significant predictors for high-ischemic burden were hypertension, baseline ejection fraction >45%, LAD CTO, proximal CTO location, and de novo CTO. Japanese-CTO score and Rentrop scale collateral grade were not associated with high-ischemic burden. Conclusions: Only 40% of patients with single vessel CTO had ischemic burden >10%. For CTO vessels, measurement of ischemic burden using SPECT prior to revascularization may be helpful in identifying beneficial subjects.

Correction of Single Photon Emission CT Image Distorted by Collimator Characteristic (시준기의 특성으로 인한 SPECT 왜곡 화상의 보정)

  • 백승권
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • SPECT technology is used for the reconstructed image in the field of industry noncontact measurement system. One of the distortion problems in reconstructed image quality is a collimator characterictic. The image distortion is caused by a geometrical structure of the collimator. This paper indicated a correction method to remove the image distortion by the structure of the collimator, and compared with the existing correction method. The correction. method removed the image distortion to use deconvolution of projection data with the shift-variant blurring function in the frequency domain. In this pater, I simulated with the collimator angle and distance between the detector and the center of object. and verified with expeimental data. The validity and limitation of correction method is studied for actual industrial applications.

  • PDF

Functional Neuroimaging in Migraine (편두통의 기능적 뇌영상)

  • Kim, Ji Hyun
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.1
    • /
    • pp.13-24
    • /
    • 2008
  • Functional neuroimaging, especially positron emission tomography (PET) and functional magnetic resonance imaging (MRI), is the main tool that allows the unveiling of the neurovascular events during a migraine attack. In migraine with aura, functional neuroimaging has contributed greatly to the understanding of the fundamental pathophysiology of the visual aura, whereas in migraine without aura, the PET findings of brainstem activation suggest a pivotal role of brainstem in the generation of migraine headache. In addition, voxel-based morphometry (VBM) method has provided an insight into the morphometric changes of the brain, which might be considered as a consequence of repeated migraine attacks. In this article, I will briefly discuss the main neuroimaging findings pertaining to the pathophysiology of migraine.

  • PDF

Reduced Regional Cerebral Blood Flow in Patients with Traumatic Brain Injury Who Had No Structural Abnormalities on Magnetic Resonance Imaging : A Quantitative Evaluation of Tc-99m-ECD SPECT Findings (정상 MRI 소견을 보이는 외상성 뇌손상 환자에서 국소뇌혈류량의 이상)

  • Kim, Nam-Hee;Chung, Young-Ki
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2002
  • Background & Purpose:Neuropsychological disorders after traumatic brain injury(TBI) are poorly correlated with structural lesions detected by structural neuroimaging techniques such as computed tomography(CT) scan or magnetic resonance imaging(MRI). It is well known that patients with TBI have cognitive and behavioral disorders even in the absence of structural lesions of the brain. This study investigated whether there are abnormalities of regional cerebral blood flow(rCBF) in TBI patients without structural abnormality on MRI, using technetium 99m ethyl cysteinate dimer(Tc-99m-ECD) single photon emission computed tomography(SPECT) scans. Materials and Methods:Twenty-eight TBI patients without structural abnormality on MRI(mild, n=13/moderate, n=9/severe, n=6) and fifteen normal controls were scanned by SPECT. A voxel-based analysis using statistical parametric mapping(SPM) was performed to compare the patients with the normal controls. Results:rCBF was reduced in the right uncus and the right lateral orbitofrontal gyrus in the TBI patients. However, no increase of rCBF was noted in the patients in comparison to the normal controls. Conclusions:These results suggest that the TBI patients, even in the absence of structural lesion of the brain, may have dysfunction of the brain, particularly of the orbitofrontal and anterior pole of the temporal cortex. They also suggest that SPECT can be a useful method to identify brain dysfunctions in combination with structural brain imaging and neuropsychological tests.

  • PDF

MicroSPECT and MicroPET Imaging of Small Animals for Drug Development

  • Jang, Beom-Su
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The process of drug discovery and development requires substantial resources and time. The drug industry has tried to reduce costs by conducting appropriate animal studies together with molecular biological and genetic analyses. Basic science research has been limited to in vitro studies of cellular processes and ex vivo tissue examination using suitable animal models of disease. However, in the past two decades new technologies have been developed that permit the imaging of live animals using radiotracer emission, X-rays, magnetic resonance signals, fluorescence, and bioluminescence. The main objective of this review is to provide an overview of small animal molecular imaging, with a focus on nuclear imaging (single photon emission computed tomography and positron emission tomography). These technologies permit visualization of toxicodynamics as well as toxicity to specific organs by directly monitoring drug accumulation and assessing physiological and/or molecular alterations. Nuclear imaging technology has great potential for improving the efficiency of the drug development process.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Changing Role of Nuclear Medicine for the Evaluation of Focal Hepatic Tumors: From Lesion Detection to Tissue Characterization (국소 간 종양의 조직적 특성을 평가하는데 있어 최근 핵의학의 역할)

  • Kim, Chun-Ki;Yu, Mi-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.211-224
    • /
    • 1998
  • The role of scintigraphic imaging has moved from the detection of lesions to the tissue-specific characterization of lesions over the past 2 decades. Major advances in nuclear medicine imaging include: 1) positron imaging, 2) improved instrumentation, such as the use of multidetector (dual or triple head) gamma cameras for single photon emission computed tomography, and 3) development of numerous new radiopharmaceuticals for positron or single photon imaging (labeled glucose analogue, amino acids, fatty acids, hormones, drugs, receptor ligands, monoclonal antibodies, etc). These advances have resulted in a significantly improved efficacy of radionuclide techniques for the evaluation of various tumors, including those within the liver. The current role of nuclear medicine in the evaluation of focal hepatic tumors is reviewed in this article with an emphasis on the clinical applications of various tracer studies and imaging findings.

  • PDF

A Study on the Optimal Design for the reconstruction Filter in Single Photon Emission Computed Tomography (SPECT) (단일광자방출 전산화 단층촬영상에서 재구성 필터의 최적설계에 관한 연구)

  • 김정희;김광익
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 1997
  • This paper presents an optimal design for the SPECT reconstruction filter, based on a physical limit of SPECT lesion detection capability. To increase the performance of the filter on lesion detectability, the filter design was focused on increasing the local SyW ratio of a threshold lesion, that was determined by minimum detectable lesion size (MDU) from SPECT lesion detectabllity contrast-detail curve. The proposed filter showed flexible window characteristics of resolution recovery and noise smoothing for MDLSs in the resolution-limited and photon-limited regions, respectively, compennting for the relative impact of the main limitation factors on threshold detectability. The simulated results showed good adaptability of the proposed filter to the changes in physical parameters of photon counts, object contrast, and detector system resolution.

  • PDF