• Title/Summary/Keyword: Tomato greenhouse

검색결과 274건 처리시간 0.022초

Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage

  • Kim, Sang Gyu;Hur, On-Sook;Ro, Na-Young;Ko, Ho-Cheol;Rhee, Ju-Hee;Sung, Jung Sook;Ryu, Kyoung-Yul;Lee, Sok-Young;Baek, Hyung Jin
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.58-64
    • /
    • 2016
  • Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt.

Transmission of Tomato leaf curl begomovirus by Two Different Species of Whitefly (Hemiptera: Aleyrodidae)

  • Hidayat, Sri Hendrastuti;Rahmayani, Enuna
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.57-61
    • /
    • 2007
  • Whitefly-transmitted geminiviruses (WTGs) are economically important pathogens causing serious damage on tomato and chilli pepper in Indonesia. Geminiviruses are readily transmitted by its insect vector, sweetpotato whitefly (Bemisia tabaci). However, greenhouse whitefly (Trialeurodes vaporariorum), another species of whitefly, is commonly found together with B. tabaci in the field. Incidence of yellow leaf curl disease in tomato and chilli pepper is probably correlated with the population of whitefly complex. It is becoming important to find the role of T. vaporariorum in the spread of the disease. Therefore, research is conducted to study the characteristic relationship between tomato leaf curl begomovirus (ToLCV) and two species of whitefly. The two species of whitefly, B. tabaci and T. vaporariorum, was capable to transmit ToLCV although it was evidenced that B. tabaci is more effective as insect vector of ToLCV in tomato and chilli pepper. A single B. tabaci was able to transmit ToLCV to tomato with a minimum acquisition and inoculation access period of 10 h. Transmission of ToLCV by T. vaporariorum required at least 10 insects per plant with a minimum acquisition and inoculation access period of 24 h. The transmission efficiency will increase with longer acquisition and inoculation access period of the insect and the higher number of insect per plant.

BASIC MECHANISM OF ROBOT ADAPTED TO PHYSICAL PROPERTIES OF TOMATO PLANT

  • Kondo, N.;Monta, M.;Shibano, Y.;Mohri, K.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.840-849
    • /
    • 1993
  • In this paper, it is reported that manipulator and hand-required for harvesting tomato were studied. At first, basic physical properties of tomato plant were investigated such as position of fruit, length of stems and leaves, width between ridges and son on . Secondly , basic mechanism of articulate manipulators with 5 to 7 degree of freedom were investigated by using evaluation indexes such as operational space, measure of manipulatability , posture diversity and so on. From the results, an articulate manipulator with 7 degrees of freedom was selected and the manipulator was manufactured as a trial according to the mechanism. Thirdly , physical properties about fruit and peduncle of tomato were also researched such as diameter, length , picking force and so on. Based on the properties , tomato harvesting hand with absorptive pad were also made as a trial. Finally, after the hand was attached to the manipulator, harvesting experiment was done in greenhouse . It was observed th t the robot could harvest satisfactorily , not only since the robot adapted to physical properties of tomato plant was manufactured but also since phyllotaxis of tomatoes was so methodical that all fruit clusters emerged in the same direction.

  • PDF

적엽작업을 반영하기 위한 시설토마토 생육모형(GreenTom) 개선 및 검증 (Improving and Validating a Greenhouse Tomato Model "GreenTom" for Simulating Artificial Defoliation)

  • 김연욱;김진현;이변우
    • 한국농림기상학회지
    • /
    • 제21권4호
    • /
    • pp.373-379
    • /
    • 2019
  • 스마트팜은 원예작물의 생산성과 품질을 제고하기 위한 생력화 방법으로 최근 많은 주목을 받고 있다. 하지만 국내의 스마트팜은 단순한 환경 모니터링과 환경제어만 가능한 초기단계에 머물고 있으며, 작물 생육에 최적화된 환경을 모의하는 의사결정도구의 개발은 미흡한 상태이다. 본 연구에서는 의사결정도구로써의 작물생육모형의 활용가능성을 확인하기 위해 국내에서 개발된 GreenTom모형의 품종모수를 추정하고 모형의 모의 성능을 검증하였다. 적엽은 시설토마토 재배에서 흔히 행해지는 농작업이지만 기존 모형은 이를 모의하지 않아 지상부 생육 모의에 문제를 나타냈다. 이를 해결하기 위해 적엽 알고리즘을 개발하여 기존 모형에 추가하고 모의 성능을 검증한 결과, 개선된 모형은 시설재배 토마토의 발달과 생육을 비교적 잘 모의하여 본 모형이 의사결정도구로 활용될 수 있음을 확인하였다.

수경재배에서 토마토풋마름병의 전염경로 (Infection Route of Bacterial Wilt of Tomato Caused by Ralstonia. solanacearum in Hydroponic Culture)

  • 남기웅;문병우;김영호;이창희
    • 생물환경조절학회지
    • /
    • 제18권2호
    • /
    • pp.171-176
    • /
    • 2009
  • 본 연구는 토마토 수경재배에서 풋마름 병원균의 분포와 침입 및 전파경로를 구명하여 풋마름병 방제의 기초 자료를 얻고자 수행하였다. 배양액 재배시스템에서 토마토 풋미름병의 발생정도별로 배양액탱크, 배지, 폐액에서 병원균의 밀도를 검정한 결과 20% 정도 발병된 포장의 폐액에서는 19,000cfu/mL의 밀도로 검출되었으며 연작연수가 많을수록 병 발생이 심하였다. 토마토 펄라이트 수경재배시스템에서 토마토 풋마름병의 발생전파 과정은 최초 발생지점으로부터 좌우로 급속히 전파되었다. 토마토 풋마름병 발생포쟁에서 병원균의 유입경로를 추적한 결과 육묘 중에 감염되는 경우와 웹스 주변의 이병된 토양에서 감염되는 경우로 크게 두 가지 방법으로 유입되는 것으로 생각된다. 또한 시판용 토마토 종자에서는 풋마름병원균이 검출되지 않았다.

국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜 (Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops)

  • 신국식;김창현;이상은;윤영만
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.1252-1257
    • /
    • 2011
  • 본 연구는 안성시 관내에서 발생하는 농산부산물 바이오매스 중 오이, 토마토, 파프리카 작물 잔사를 수거하여 실험에 공시하고 각 부산물의 발생특성과 메탄 생산 퍼텐셜을 조사 분석하였다. 농산부산물의 에너지 자원화 기준으로는 메탄생산량을 설정하고, 부산물별 메탄 퍼텐셜을 시험하였으며 측정된 메탄 퍼텐셜을 기초자료로 활용하여 단위면적당 바이오매스 발생량, 바이오가스 생산량 및 비료가치를 조사 분석하였다. 실험적 메탄 퍼텐셜은 농산부산물별로 $0.170{\sim}0.354Nm^3\;kg^{-1}\;VS_{added}$의 값을 보였으며, 그중 파프리카 열매가 가장 높은 메탄 생산 퍼텐셜을 보였으며, 오이 줄기가 가장 낮은 메탄 생산 퍼텐셜을 보였다. 시설 원예에서 기인하는 바이오매스별 메탄생산량은 줄기 부위가 잎이나 열매 부위 보다 낮은 값을 나타내는 경향을 보였다. 시설 재배지의 단위면적당 바이오매스 발생량은 오이 30.5 > 토마토 28.3 > 파프리카 $21.5Mg\;ha^{-1}$순 이었으며, 단위면적당 메탄생산량은 오이 782.5 > 파프리카 686.8 > 토마토 $645.0Nm^3\;ha^{-1}$순 이었다.

Penman-Monteith을 이용한 토마토와 파프리카의 증발산 모델 평가 (Assessment of Water Control Model for Tomato and Paprika in the Greenhouse Using the Penman-Monteith Model)

  • 솜늑 시리락;홍영신;김민영;이상규;백정현;곽강수;이현동;이재수
    • 생물환경조절학회지
    • /
    • 제29권3호
    • /
    • pp.209-218
    • /
    • 2020
  • ETc 손실을 보상하는데 필요한 물의 양을 작물 용수 요구량(Crop water requirement, CWR)로 정의되며, ETc 평가는 작물 필요 요구량을 정확하게 정량화하는 데 필요하며, 물 균형 계산에서 중요한 역할을 한다. 토마토와 파프리카의 실제 관수 요구량(Actual crop water, ACW)이 적절한 CWR인지 평가하였다. 토마토와 파프리카 재배에 적정한 AWC 예측 및 추정을 위하여 온실 내부 환경데이터를 Penman-Monteith을 이용하여 기준 작물 증발산(ET)을 계산한 후, 기준 증발산은 작물 상수(Kc;토마토-1.15, 파프리카-1.05)계수로 조정하였다. 토마토와 파프리카의 CWR과 ACW를 계산하여 비교 평가한 결과 ACW가 CWR을 대체할 수 있지만 파프리카의 ACW는 필요 이상으로 높게 나타났다. 또한, 토마토의 ACW는 1일 100 ~ 1,200 ml이고, 파프리카의 ACW는 1일 100 ~ 500 ml가 적절한 것으로 나타났다. 그러나, 스마트 온실에서 ETc의 정밀도를 높이려면, ETc가 CWR로 변환되고 ACW와 비교하기 위해서 클래스 A팬 설정이 필요하다. 향후 실시간으로 CWR을 측정하기 위한 시뮬레이션 프로그램 연구가 필요하다.

Effect of Polycarbonate Covering Sheet on Greenhouse Indoor Environments and Growth Behavior of Cherry Tomatoes

  • Choi, Kyung Yun;Kim, Soo Bok;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Ju-Ho;Kim, Namil
    • Elastomers and Composites
    • /
    • 제55권2호
    • /
    • pp.114-119
    • /
    • 2020
  • The effect of a greenhouse-covering material on its indoor environment and on the characteristics of cherry tomatoes grown in it was investigated. The conventional polyethylene (PE) film on the greenhouse roof was replaced by a polycarbonate (PC) sheet, while maintaining the main structural frame intact. Color changes and the formation of water droplets on the PC surface were avoided by applying coextrusion and coating layers. When compared to the PE greenhouse, the PC greenhouse enabled increased light transmittance and thus a higher indoor temperature during both summer and winter. The thermal insulating property of the PC sheet effectively reduced the heating loss by approximately 55% during winter. The cherry tomatoes grown in the PC greenhouse exhibited superior fruit characteristics in terms of size, weight, and sugar content. The total amount of cherry tomatoes produced per unit area (1,000 ㎡) in the PC greenhouse was found to be greater by approximately 19% compared to that in the PE greenhouse.

Spatial, Vertical, and Temporal Variability of Ambient Environments in Strawberry and Tomato Greenhouses in Winter

  • Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Hur, Yun-Kun;Hur, Seung-Oh;Hong, Soon-Jung;Sung, Je-Hoon;Kim, Hak-Hun
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.47-56
    • /
    • 2014
  • Purpose: In protected crop production facilities such as greenhouse and plant factory, farmers should be present and/or visit frequently to the production site for maintaining optimum environmental conditions and better production, which is time and labor consuming. Monitoring of environmental condition is highly important for optimum control of the conditions, and the condition is not uniform within the facility. Objectives of the paper were to investigate spatial and vertical variability in ambient environmental variables and to provide useful information for sensing and control of the environments. Methods: Experiments were conducted in a strawberry-growing greenhouse (greenhouse 1) and a cherry tomato-growing greenhouse (greenhouse 2). Selected ambient environmental variables for experiment in greenhouse 1 were air temperature and humidity, and in greenhouse 2, they were air temperature, humidity, PPFD (Photosynthetic Photon Flux Density), and $CO_2$ concentration. Results: Considerable spatial, vertical, and temporal variability of the ambient environments were observed. In greenhouse 1, overall temperature increased from 12:00 to 14:00 and increased after that, while RH increased continuously during the experiments. Differences between the maximum and minimum temperature and RH values were greater when one of the side windows were open than those when both of the windows were closed. The location and height of the maximum and minimum measurements were also different. In greenhouse 2, differences between the maximum and minimum air temperatures at noon and sunset were greater when both windows were open. The maximum PPFD were observed at a 3-m height, close to the lighting source, and $CO_2$ concentration in the crop growing regions. Conclusions: In this study, spatial, vertical, and temporal variability of ambient crop growing conditions in greenhouses was evaluated. And also the variability was affected by operation conditions such as window opening and heating. Results of the study would provide information for optimum monitoring and control of ambient greenhouse environments.

오일제제, 유황제제를 활용한 고추, 토마토 해충방제 효과 (Effect of Agricultural Organic Materials Using Sulfur and Oil on Insect Control in Pepper and Tomato)

  • 남춘우;조영상;문희자;안세웅;서태철;전희
    • 한국유기농업학회지
    • /
    • 제25권4호
    • /
    • pp.737-747
    • /
    • 2017
  • This experiment was carried out to determine the optimal concentration of agricultural organic materials using sulfur and oil for the insect pest control in pepper and cherry tomato cultivation. The control value of aphids and Oriental tobacco budworm (OTB) was examined one day after spraying with sulfur preparation (SP) (0.33~0.17%), oil preparations (OP) (2.00~0.33%), SP+OP, OP+ginkgo leaf extracts (GLE), SP+OP+GLE on the "Super Manidaa"pepper. The aphid control in pepper was complete by applications of SP+OP (0.25+1.00%) in the early growth stage and the control value was above 98.1% by the application of OP+GLE (1.00+1.00 %), SP+OP+GLE (0.25+1.0+1%), SP+OP+GLE (0.25+1.0+0.5%) in the middle to late growth stage while showing 0% in the control treatment. The OTB was completely controlled by the 3 times application with the high concentration of SP+OP (0.25+1.00%) in pepper cultivation. This result indicates that the oil and the sulfur preparations should be applied at low concentration before insect pests do not appeared, and then sprayed at the high concentration after they appear at pepper plant. The greenhouse whitefly in 'Minichal' tomatoes was completely controlled by three times application of SP (0.25~0.33), OP (1.0~2.00%). and all the treatment of SP+OP. However, continuous control with intervals of 1~3 days was considered favorable in the tomato plant. By the periodical control with agricultural organic materials using sulfur and oil, the greenhouse whitefly, which is a high-temperature insect pest, several moths of OTB did not occur at all. In conclusion, SP+OP (0.17%+0.33%) treatment was the most economical combination to control the aphid, OTB, and greenhouse whitefly in pepper and tomato cultivation when considering operating cost. In addition, we recommend that SP should not be sprayed on the plant shoots during the day time from July to August because of high temperature.